| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumbagdiag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 2 |
|
gsumbagdiag.s |
⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } |
| 3 |
|
gsumbagdiag.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 4 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) |
| 5 |
|
breq1 |
⊢ ( 𝑥 = 𝑌 → ( 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) |
| 6 |
5
|
elrab |
⊢ ( 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) |
| 7 |
4 6
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) ) |
| 8 |
7
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ 𝐷 ) |
| 9 |
7
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 ∈ 𝐷 ) |
| 11 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ 𝑆 ) |
| 12 |
|
breq1 |
⊢ ( 𝑦 = 𝑋 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑋 ∘r ≤ 𝐹 ) ) |
| 13 |
12 2
|
elrab2 |
⊢ ( 𝑋 ∈ 𝑆 ↔ ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 14 |
11 13
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑋 ∈ 𝐷 ∧ 𝑋 ∘r ≤ 𝐹 ) ) |
| 15 |
14
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ 𝐷 ) |
| 16 |
1
|
psrbagf |
⊢ ( 𝑋 ∈ 𝐷 → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 : 𝐼 ⟶ ℕ0 ) |
| 18 |
14
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∘r ≤ 𝐹 ) |
| 19 |
1
|
psrbagcon |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑋 : 𝐼 ⟶ ℕ0 ∧ 𝑋 ∘r ≤ 𝐹 ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 20 |
10 17 18 19
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) ) |
| 21 |
20
|
simprd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) |
| 22 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 23 |
10 22
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 24 |
23
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐹 Fn 𝐼 ) |
| 25 |
10 24
|
fndmexd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝐼 ∈ V ) |
| 26 |
1
|
psrbagf |
⊢ ( 𝑌 ∈ 𝐷 → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 27 |
8 26
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 : 𝐼 ⟶ ℕ0 ) |
| 28 |
20
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 ) |
| 29 |
1
|
psrbagf |
⊢ ( ( 𝐹 ∘f − 𝑋 ) ∈ 𝐷 → ( 𝐹 ∘f − 𝑋 ) : 𝐼 ⟶ ℕ0 ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) : 𝐼 ⟶ ℕ0 ) |
| 31 |
|
nn0re |
⊢ ( 𝑢 ∈ ℕ0 → 𝑢 ∈ ℝ ) |
| 32 |
|
nn0re |
⊢ ( 𝑣 ∈ ℕ0 → 𝑣 ∈ ℝ ) |
| 33 |
|
nn0re |
⊢ ( 𝑤 ∈ ℕ0 → 𝑤 ∈ ℝ ) |
| 34 |
|
letr |
⊢ ( ( 𝑢 ∈ ℝ ∧ 𝑣 ∈ ℝ ∧ 𝑤 ∈ ℝ ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) |
| 35 |
31 32 33 34
|
syl3an |
⊢ ( ( 𝑢 ∈ ℕ0 ∧ 𝑣 ∈ ℕ0 ∧ 𝑤 ∈ ℕ0 ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) |
| 36 |
35
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ ( 𝑢 ∈ ℕ0 ∧ 𝑣 ∈ ℕ0 ∧ 𝑤 ∈ ℕ0 ) ) → ( ( 𝑢 ≤ 𝑣 ∧ 𝑣 ≤ 𝑤 ) → 𝑢 ≤ 𝑤 ) ) |
| 37 |
25 27 30 23 36
|
caoftrn |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ∧ ( 𝐹 ∘f − 𝑋 ) ∘r ≤ 𝐹 ) → 𝑌 ∘r ≤ 𝐹 ) ) |
| 38 |
9 21 37
|
mp2and |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∘r ≤ 𝐹 ) |
| 39 |
|
breq1 |
⊢ ( 𝑦 = 𝑌 → ( 𝑦 ∘r ≤ 𝐹 ↔ 𝑌 ∘r ≤ 𝐹 ) ) |
| 40 |
39 2
|
elrab2 |
⊢ ( 𝑌 ∈ 𝑆 ↔ ( 𝑌 ∈ 𝐷 ∧ 𝑌 ∘r ≤ 𝐹 ) ) |
| 41 |
8 38 40
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 ∈ 𝑆 ) |
| 42 |
|
breq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ↔ 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) ) |
| 43 |
17
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ) |
| 44 |
27
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ) |
| 45 |
23
|
ffvelcdmda |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) |
| 46 |
|
nn0re |
⊢ ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑋 ‘ 𝑧 ) ∈ ℝ ) |
| 47 |
|
nn0re |
⊢ ( ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑌 ‘ 𝑧 ) ∈ ℝ ) |
| 48 |
|
nn0re |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 → ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) |
| 49 |
|
leaddsub2 |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 50 |
|
leaddsub |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( ( 𝑋 ‘ 𝑧 ) + ( 𝑌 ‘ 𝑧 ) ) ≤ ( 𝐹 ‘ 𝑧 ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 51 |
49 50
|
bitr3d |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℝ ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℝ ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 52 |
46 47 48 51
|
syl3an |
⊢ ( ( ( 𝑋 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑌 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 53 |
43 44 45 52
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 54 |
53
|
ralbidva |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( ∀ 𝑧 ∈ 𝐼 ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 55 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ∈ V ) |
| 56 |
27
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑌 ‘ 𝑧 ) ) ) |
| 57 |
17
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 Fn 𝐼 ) |
| 58 |
|
inidm |
⊢ ( 𝐼 ∩ 𝐼 ) = 𝐼 |
| 59 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) = ( 𝐹 ‘ 𝑧 ) ) |
| 60 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑋 ‘ 𝑧 ) = ( 𝑋 ‘ 𝑧 ) ) |
| 61 |
24 57 25 25 58 59 60
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑋 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 62 |
25 44 55 56 61
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑌 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑋 ‘ 𝑧 ) ) ) ) |
| 63 |
|
ovexd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ∈ V ) |
| 64 |
17
|
feqmptd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑋 ‘ 𝑧 ) ) ) |
| 65 |
27
|
ffnd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑌 Fn 𝐼 ) |
| 66 |
|
eqidd |
⊢ ( ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑌 ‘ 𝑧 ) = ( 𝑌 ‘ 𝑧 ) ) |
| 67 |
24 65 25 25 58 59 66
|
offval |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝐹 ∘f − 𝑌 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 68 |
25 43 63 64 67
|
ofrfval2 |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ↔ ∀ 𝑧 ∈ 𝐼 ( 𝑋 ‘ 𝑧 ) ≤ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑌 ‘ 𝑧 ) ) ) ) |
| 69 |
54 62 68
|
3bitr4d |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) ↔ 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) ) |
| 70 |
9 69
|
mpbid |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) ) |
| 71 |
42 15 70
|
elrabd |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) } ) |
| 72 |
41 71
|
jca |
⊢ ( ( 𝜑 ∧ ( 𝑋 ∈ 𝑆 ∧ 𝑌 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑋 ) } ) ) → ( 𝑌 ∈ 𝑆 ∧ 𝑋 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑌 ) } ) ) |