| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d2.b |
|
| 2 |
|
gsum2d2.z |
|
| 3 |
|
gsum2d2.g |
|
| 4 |
|
gsum2d2.a |
|
| 5 |
|
gsum2d2.r |
|
| 6 |
|
gsum2d2.f |
|
| 7 |
|
gsum2d2.u |
|
| 8 |
|
gsum2d2.n |
|
| 9 |
|
vsnex |
|
| 10 |
|
xpexg |
|
| 11 |
9 5 10
|
sylancr |
|
| 12 |
11
|
ralrimiva |
|
| 13 |
|
iunexg |
|
| 14 |
4 12 13
|
syl2anc |
|
| 15 |
|
relxp |
|
| 16 |
15
|
rgenw |
|
| 17 |
|
reliun |
|
| 18 |
16 17
|
mpbir |
|
| 19 |
18
|
a1i |
|
| 20 |
|
vex |
|
| 21 |
20
|
eldm2 |
|
| 22 |
|
eliunxp |
|
| 23 |
|
vex |
|
| 24 |
20 23
|
opth1 |
|
| 25 |
24
|
ad2antrl |
|
| 26 |
|
simprrl |
|
| 27 |
25 26
|
eqeltrd |
|
| 28 |
27
|
ex |
|
| 29 |
28
|
exlimdvv |
|
| 30 |
22 29
|
biimtrid |
|
| 31 |
30
|
exlimdv |
|
| 32 |
21 31
|
biimtrid |
|
| 33 |
32
|
ssrdv |
|
| 34 |
6
|
ralrimivva |
|
| 35 |
|
eqid |
|
| 36 |
35
|
fmpox |
|
| 37 |
34 36
|
sylib |
|
| 38 |
1 2 3 4 5 6 7 8
|
gsum2d2lem |
|
| 39 |
1 2 3 14 19 4 33 37 38
|
gsum2d |
|
| 40 |
|
nfcv |
|
| 41 |
|
nfcv |
|
| 42 |
|
nfiu1 |
|
| 43 |
|
nfcv |
|
| 44 |
42 43
|
nfima |
|
| 45 |
|
nfcv |
|
| 46 |
|
nfmpo1 |
|
| 47 |
|
nfcv |
|
| 48 |
45 46 47
|
nfov |
|
| 49 |
44 48
|
nfmpt |
|
| 50 |
40 41 49
|
nfov |
|
| 51 |
|
nfcv |
|
| 52 |
|
sneq |
|
| 53 |
52
|
imaeq2d |
|
| 54 |
|
oveq1 |
|
| 55 |
53 54
|
mpteq12dv |
|
| 56 |
55
|
oveq2d |
|
| 57 |
50 51 56
|
cbvmpt |
|
| 58 |
|
vex |
|
| 59 |
|
vex |
|
| 60 |
58 59
|
elimasn |
|
| 61 |
|
opeliunxp |
|
| 62 |
60 61
|
bitri |
|
| 63 |
62
|
baib |
|
| 64 |
63
|
eqrdv |
|
| 65 |
64
|
mpteq1d |
|
| 66 |
|
nfcv |
|
| 67 |
|
nfmpo2 |
|
| 68 |
|
nfcv |
|
| 69 |
66 67 68
|
nfov |
|
| 70 |
|
nfcv |
|
| 71 |
|
oveq2 |
|
| 72 |
69 70 71
|
cbvmpt |
|
| 73 |
65 72
|
eqtrdi |
|
| 74 |
73
|
adantl |
|
| 75 |
|
simprl |
|
| 76 |
|
simprr |
|
| 77 |
35
|
ovmpt4g |
|
| 78 |
75 76 6 77
|
syl3anc |
|
| 79 |
78
|
anassrs |
|
| 80 |
79
|
mpteq2dva |
|
| 81 |
74 80
|
eqtrd |
|
| 82 |
81
|
oveq2d |
|
| 83 |
82
|
mpteq2dva |
|
| 84 |
57 83
|
eqtrid |
|
| 85 |
84
|
oveq2d |
|
| 86 |
39 85
|
eqtrd |
|