Metamath Proof Explorer


Theorem gsum2d2

Description: Write a group sum over a two-dimensional region as a double sum. Note that C ( j ) is a function of j . (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses gsum2d2.b B=BaseG
gsum2d2.z 0˙=0G
gsum2d2.g φGCMnd
gsum2d2.a φAV
gsum2d2.r φjACW
gsum2d2.f φjAkCXB
gsum2d2.u φUFin
gsum2d2.n φjAkC¬jUkX=0˙
Assertion gsum2d2 φGjA,kCX=GjAGkCX

Proof

Step Hyp Ref Expression
1 gsum2d2.b B=BaseG
2 gsum2d2.z 0˙=0G
3 gsum2d2.g φGCMnd
4 gsum2d2.a φAV
5 gsum2d2.r φjACW
6 gsum2d2.f φjAkCXB
7 gsum2d2.u φUFin
8 gsum2d2.n φjAkC¬jUkX=0˙
9 vsnex jV
10 xpexg jVCWj×CV
11 9 5 10 sylancr φjAj×CV
12 11 ralrimiva φjAj×CV
13 iunexg AVjAj×CVjAj×CV
14 4 12 13 syl2anc φjAj×CV
15 relxp Relj×C
16 15 rgenw jARelj×C
17 reliun ReljAj×CjARelj×C
18 16 17 mpbir ReljAj×C
19 18 a1i φReljAj×C
20 vex xV
21 20 eldm2 xdomjAj×CyxyjAj×C
22 eliunxp xyjAj×Cjkxy=jkjAkC
23 vex yV
24 20 23 opth1 xy=jkx=j
25 24 ad2antrl φxy=jkjAkCx=j
26 simprrl φxy=jkjAkCjA
27 25 26 eqeltrd φxy=jkjAkCxA
28 27 ex φxy=jkjAkCxA
29 28 exlimdvv φjkxy=jkjAkCxA
30 22 29 biimtrid φxyjAj×CxA
31 30 exlimdv φyxyjAj×CxA
32 21 31 biimtrid φxdomjAj×CxA
33 32 ssrdv φdomjAj×CA
34 6 ralrimivva φjAkCXB
35 eqid jA,kCX=jA,kCX
36 35 fmpox jAkCXBjA,kCX:jAj×CB
37 34 36 sylib φjA,kCX:jAj×CB
38 1 2 3 4 5 6 7 8 gsum2d2lem φfinSupp0˙jA,kCX
39 1 2 3 14 19 4 33 37 38 gsum2d φGjA,kCX=GmAGnjAj×CmmjA,kCXn
40 nfcv _jG
41 nfcv _jΣ𝑔
42 nfiu1 _jjAj×C
43 nfcv _jm
44 42 43 nfima _jjAj×Cm
45 nfcv _jm
46 nfmpo1 _jjA,kCX
47 nfcv _jn
48 45 46 47 nfov _jmjA,kCXn
49 44 48 nfmpt _jnjAj×CmmjA,kCXn
50 40 41 49 nfov _jGnjAj×CmmjA,kCXn
51 nfcv _mGnjAj×CjjjA,kCXn
52 sneq m=jm=j
53 52 imaeq2d m=jjAj×Cm=jAj×Cj
54 oveq1 m=jmjA,kCXn=jjA,kCXn
55 53 54 mpteq12dv m=jnjAj×CmmjA,kCXn=njAj×CjjjA,kCXn
56 55 oveq2d m=jGnjAj×CmmjA,kCXn=GnjAj×CjjjA,kCXn
57 50 51 56 cbvmpt mAGnjAj×CmmjA,kCXn=jAGnjAj×CjjjA,kCXn
58 vex jV
59 vex kV
60 58 59 elimasn kjAj×CjjkjAj×C
61 opeliunxp jkjAj×CjAkC
62 60 61 bitri kjAj×CjjAkC
63 62 baib jAkjAj×CjkC
64 63 eqrdv jAjAj×Cj=C
65 64 mpteq1d jAnjAj×CjjjA,kCXn=nCjjA,kCXn
66 nfcv _kj
67 nfmpo2 _kjA,kCX
68 nfcv _kn
69 66 67 68 nfov _kjjA,kCXn
70 nfcv _njjA,kCXk
71 oveq2 n=kjjA,kCXn=jjA,kCXk
72 69 70 71 cbvmpt nCjjA,kCXn=kCjjA,kCXk
73 65 72 eqtrdi jAnjAj×CjjjA,kCXn=kCjjA,kCXk
74 73 adantl φjAnjAj×CjjjA,kCXn=kCjjA,kCXk
75 simprl φjAkCjA
76 simprr φjAkCkC
77 35 ovmpt4g jAkCXBjjA,kCXk=X
78 75 76 6 77 syl3anc φjAkCjjA,kCXk=X
79 78 anassrs φjAkCjjA,kCXk=X
80 79 mpteq2dva φjAkCjjA,kCXk=kCX
81 74 80 eqtrd φjAnjAj×CjjjA,kCXn=kCX
82 81 oveq2d φjAGnjAj×CjjjA,kCXn=GkCX
83 82 mpteq2dva φjAGnjAj×CjjjA,kCXn=jAGkCX
84 57 83 eqtrid φmAGnjAj×CmmjA,kCXn=jAGkCX
85 84 oveq2d φGmAGnjAj×CmmjA,kCXn=GjAGkCX
86 39 85 eqtrd φGjA,kCX=GjAGkCX