Metamath Proof Explorer


Theorem opeliunxp

Description: Membership in a union of Cartesian products. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by Mario Carneiro, 1-Jan-2017)

Ref Expression
Assertion opeliunxp x C x A x × B x A C B

Proof

Step Hyp Ref Expression
1 df-iun x A x × B = y | x A y x × B
2 1 eleq2i x C x A x × B x C y | x A y x × B
3 opex x C V
4 df-rex x A y x × B x x A y x × B
5 nfv z x A y x × B
6 nfs1v x z x x A
7 nfcv _ x z
8 nfcsb1v _ x z / x B
9 7 8 nfxp _ x z × z / x B
10 9 nfcri x y z × z / x B
11 6 10 nfan x z x x A y z × z / x B
12 sbequ12 x = z x A z x x A
13 sneq x = z x = z
14 csbeq1a x = z B = z / x B
15 13 14 xpeq12d x = z x × B = z × z / x B
16 15 eleq2d x = z y x × B y z × z / x B
17 12 16 anbi12d x = z x A y x × B z x x A y z × z / x B
18 5 11 17 cbvexv1 x x A y x × B z z x x A y z × z / x B
19 4 18 bitri x A y x × B z z x x A y z × z / x B
20 eleq1 y = x C y z × z / x B x C z × z / x B
21 20 anbi2d y = x C z x x A y z × z / x B z x x A x C z × z / x B
22 21 exbidv y = x C z z x x A y z × z / x B z z x x A x C z × z / x B
23 19 22 bitrid y = x C x A y x × B z z x x A x C z × z / x B
24 3 23 elab x C y | x A y x × B z z x x A x C z × z / x B
25 opelxp x C z × z / x B x z C z / x B
26 25 anbi2i z x x A x C z × z / x B z x x A x z C z / x B
27 an12 z x x A x z C z / x B x z z x x A C z / x B
28 velsn x z x = z
29 equcom x = z z = x
30 28 29 bitri x z z = x
31 30 anbi1i x z z x x A C z / x B z = x z x x A C z / x B
32 26 27 31 3bitri z x x A x C z × z / x B z = x z x x A C z / x B
33 32 exbii z z x x A x C z × z / x B z z = x z x x A C z / x B
34 sbequ12r z = x z x x A x A
35 14 equcoms z = x B = z / x B
36 35 eqcomd z = x z / x B = B
37 36 eleq2d z = x C z / x B C B
38 34 37 anbi12d z = x z x x A C z / x B x A C B
39 38 equsexvw z z = x z x x A C z / x B x A C B
40 33 39 bitri z z x x A x C z × z / x B x A C B
41 2 24 40 3bitri x C x A x × B x A C B