| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d.b |
|
| 2 |
|
gsum2d.z |
|
| 3 |
|
gsum2d.g |
|
| 4 |
|
gsum2d.a |
|
| 5 |
|
gsum2d.r |
|
| 6 |
|
gsum2d.d |
|
| 7 |
|
gsum2d.s |
|
| 8 |
|
gsum2d.f |
|
| 9 |
|
gsum2d.w |
|
| 10 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem2 |
|
| 11 |
|
suppssdm |
|
| 12 |
11 8
|
fssdm |
|
| 13 |
|
relss |
|
| 14 |
12 5 13
|
sylc |
|
| 15 |
|
relssdmrn |
|
| 16 |
|
ssv |
|
| 17 |
|
xpss2 |
|
| 18 |
16 17
|
ax-mp |
|
| 19 |
15 18
|
sstrdi |
|
| 20 |
14 19
|
syl |
|
| 21 |
12 20
|
ssind |
|
| 22 |
|
df-res |
|
| 23 |
21 22
|
sseqtrrdi |
|
| 24 |
1 2 3 4 8 23 9
|
gsumres |
|
| 25 |
|
dmss |
|
| 26 |
12 25
|
syl |
|
| 27 |
26 7
|
sstrd |
|
| 28 |
27
|
resmptd |
|
| 29 |
28
|
oveq2d |
|
| 30 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
|
| 31 |
30
|
adantr |
|
| 32 |
31
|
fmpttd |
|
| 33 |
|
vex |
|
| 34 |
|
vex |
|
| 35 |
33 34
|
elimasn |
|
| 36 |
35
|
biimpi |
|
| 37 |
36
|
ad2antll |
|
| 38 |
|
eldifn |
|
| 39 |
38
|
ad2antrl |
|
| 40 |
33 34
|
opeldm |
|
| 41 |
39 40
|
nsyl |
|
| 42 |
37 41
|
eldifd |
|
| 43 |
|
df-ov |
|
| 44 |
|
ssidd |
|
| 45 |
2
|
fvexi |
|
| 46 |
45
|
a1i |
|
| 47 |
8 44 4 46
|
suppssr |
|
| 48 |
43 47
|
eqtrid |
|
| 49 |
42 48
|
syldan |
|
| 50 |
49
|
anassrs |
|
| 51 |
50
|
mpteq2dva |
|
| 52 |
51
|
oveq2d |
|
| 53 |
|
cmnmnd |
|
| 54 |
3 53
|
syl |
|
| 55 |
|
imaexg |
|
| 56 |
4 55
|
syl |
|
| 57 |
2
|
gsumz |
|
| 58 |
54 56 57
|
syl2anc |
|
| 59 |
58
|
adantr |
|
| 60 |
52 59
|
eqtrd |
|
| 61 |
60 6
|
suppss2 |
|
| 62 |
|
funmpt |
|
| 63 |
62
|
a1i |
|
| 64 |
9
|
fsuppimpd |
|
| 65 |
|
dmfi |
|
| 66 |
64 65
|
syl |
|
| 67 |
66 61
|
ssfid |
|
| 68 |
6
|
mptexd |
|
| 69 |
|
isfsupp |
|
| 70 |
68 46 69
|
syl2anc |
|
| 71 |
63 67 70
|
mpbir2and |
|
| 72 |
1 2 3 6 32 61 71
|
gsumres |
|
| 73 |
29 72
|
eqtr3d |
|
| 74 |
10 24 73
|
3eqtr3d |
|