| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsum2d.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsum2d.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsum2d.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsum2d.r |
⊢ ( 𝜑 → Rel 𝐴 ) |
| 6 |
|
gsum2d.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 7 |
|
gsum2d.s |
⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) |
| 8 |
|
gsum2d.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 9 |
|
gsum2d.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 10 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 11 |
|
suppssdm |
⊢ ( 𝐹 supp 0 ) ⊆ dom 𝐹 |
| 12 |
11 8
|
fssdm |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ 𝐴 ) |
| 13 |
|
relss |
⊢ ( ( 𝐹 supp 0 ) ⊆ 𝐴 → ( Rel 𝐴 → Rel ( 𝐹 supp 0 ) ) ) |
| 14 |
12 5 13
|
sylc |
⊢ ( 𝜑 → Rel ( 𝐹 supp 0 ) ) |
| 15 |
|
relssdmrn |
⊢ ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ) |
| 16 |
|
ssv |
⊢ ran ( 𝐹 supp 0 ) ⊆ V |
| 17 |
|
xpss2 |
⊢ ( ran ( 𝐹 supp 0 ) ⊆ V → ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 18 |
16 17
|
ax-mp |
⊢ ( dom ( 𝐹 supp 0 ) × ran ( 𝐹 supp 0 ) ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) |
| 19 |
15 18
|
sstrdi |
⊢ ( Rel ( 𝐹 supp 0 ) → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 20 |
14 19
|
syl |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 21 |
12 20
|
ssind |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) ) ) |
| 22 |
|
df-res |
⊢ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) = ( 𝐴 ∩ ( dom ( 𝐹 supp 0 ) × V ) ) |
| 23 |
21 22
|
sseqtrrdi |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) |
| 24 |
1 2 3 4 8 23 9
|
gsumres |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg 𝐹 ) ) |
| 25 |
|
dmss |
⊢ ( ( 𝐹 supp 0 ) ⊆ 𝐴 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 ) |
| 26 |
12 25
|
syl |
⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ dom 𝐴 ) |
| 27 |
26 7
|
sstrd |
⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ⊆ 𝐷 ) |
| 28 |
27
|
resmptd |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 29 |
28
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 30 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 31 |
30
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐷 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 32 |
31
|
fmpttd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) : 𝐷 ⟶ 𝐵 ) |
| 33 |
|
vex |
⊢ 𝑗 ∈ V |
| 34 |
|
vex |
⊢ 𝑘 ∈ V |
| 35 |
33 34
|
elimasn |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 36 |
35
|
biimpi |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 37 |
36
|
ad2antll |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 38 |
|
eldifn |
⊢ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) ) |
| 39 |
38
|
ad2antrl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ 𝑗 ∈ dom ( 𝐹 supp 0 ) ) |
| 40 |
33 34
|
opeldm |
⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑗 ∈ dom ( 𝐹 supp 0 ) ) |
| 41 |
39 40
|
nsyl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 42 |
37 41
|
eldifd |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
| 43 |
|
df-ov |
⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) |
| 44 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 45 |
2
|
fvexi |
⊢ 0 ∈ V |
| 46 |
45
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 47 |
8 44 4 46
|
suppssr |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 48 |
43 47
|
eqtrid |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 49 |
42 48
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 50 |
49
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 51 |
50
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) |
| 52 |
51
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) ) |
| 53 |
|
cmnmnd |
⊢ ( 𝐺 ∈ CMnd → 𝐺 ∈ Mnd ) |
| 54 |
3 53
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ Mnd ) |
| 55 |
|
imaexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 56 |
4 55
|
syl |
⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 57 |
2
|
gsumz |
⊢ ( ( 𝐺 ∈ Mnd ∧ ( 𝐴 “ { 𝑗 } ) ∈ V ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 58 |
54 56 57
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ 0 ) ) = 0 ) |
| 60 |
52 59
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝐷 ∖ dom ( 𝐹 supp 0 ) ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = 0 ) |
| 61 |
60 6
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ⊆ dom ( 𝐹 supp 0 ) ) |
| 62 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) |
| 63 |
62
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 64 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 65 |
|
dmfi |
⊢ ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 66 |
64 65
|
syl |
⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 67 |
66 61
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) |
| 68 |
6
|
mptexd |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V ) |
| 69 |
|
isfsupp |
⊢ ( ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 70 |
68 46 69
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ↔ ( Fun ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ∧ ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 71 |
63 67 70
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) finSupp 0 ) |
| 72 |
1 2 3 6 32 61 71
|
gsumres |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ↾ dom ( 𝐹 supp 0 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 73 |
29 72
|
eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 74 |
10 24 73
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ( 𝐺 Σg ( 𝑗 ∈ 𝐷 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |