| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 2 |
|
gsum2d.z |
⊢ 0 = ( 0g ‘ 𝐺 ) |
| 3 |
|
gsum2d.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 4 |
|
gsum2d.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
gsum2d.r |
⊢ ( 𝜑 → Rel 𝐴 ) |
| 6 |
|
gsum2d.d |
⊢ ( 𝜑 → 𝐷 ∈ 𝑊 ) |
| 7 |
|
gsum2d.s |
⊢ ( 𝜑 → dom 𝐴 ⊆ 𝐷 ) |
| 8 |
|
gsum2d.f |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ 𝐵 ) |
| 9 |
|
gsum2d.w |
⊢ ( 𝜑 → 𝐹 finSupp 0 ) |
| 10 |
9
|
fsuppimpd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ∈ Fin ) |
| 11 |
|
dmfi |
⊢ ( ( 𝐹 supp 0 ) ∈ Fin → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 12 |
10 11
|
syl |
⊢ ( 𝜑 → dom ( 𝐹 supp 0 ) ∈ Fin ) |
| 13 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ ∅ ) ) |
| 14 |
|
res0 |
⊢ ( 𝐴 ↾ ∅ ) = ∅ |
| 15 |
13 14
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐴 ↾ 𝑥 ) = ∅ ) |
| 16 |
15
|
reseq2d |
⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ∅ ) ) |
| 17 |
|
res0 |
⊢ ( 𝐹 ↾ ∅ ) = ∅ |
| 18 |
16 17
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ∅ ) |
| 19 |
18
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ∅ ) ) |
| 20 |
|
mpteq1 |
⊢ ( 𝑥 = ∅ → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 21 |
|
mpt0 |
⊢ ( 𝑗 ∈ ∅ ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅ |
| 22 |
20 21
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ∅ ) |
| 23 |
22
|
oveq2d |
⊢ ( 𝑥 = ∅ → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ∅ ) ) |
| 24 |
19 23
|
eqeq12d |
⊢ ( 𝑥 = ∅ → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) ) |
| 25 |
24
|
imbi2d |
⊢ ( 𝑥 = ∅ → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) ) ) |
| 26 |
|
reseq2 |
⊢ ( 𝑥 = 𝑦 → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ 𝑦 ) ) |
| 27 |
26
|
reseq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) |
| 28 |
27
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ) |
| 29 |
|
mpteq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 30 |
29
|
oveq2d |
⊢ ( 𝑥 = 𝑦 → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 31 |
28 30
|
eqeq12d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 32 |
31
|
imbi2d |
⊢ ( 𝑥 = 𝑦 → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 33 |
|
reseq2 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 34 |
33
|
reseq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 35 |
34
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) ) |
| 36 |
|
mpteq1 |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 37 |
36
|
oveq2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 38 |
35 37
|
eqeq12d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 39 |
38
|
imbi2d |
⊢ ( 𝑥 = ( 𝑦 ∪ { 𝑧 } ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 40 |
|
reseq2 |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐴 ↾ 𝑥 ) = ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) |
| 41 |
40
|
reseq2d |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) |
| 42 |
41
|
oveq2d |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) ) |
| 43 |
|
mpteq1 |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) = ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |
| 45 |
42 44
|
eqeq12d |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 46 |
45
|
imbi2d |
⊢ ( 𝑥 = dom ( 𝐹 supp 0 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑥 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑥 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 47 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐺 Σg ∅ ) = ( 𝐺 Σg ∅ ) ) |
| 48 |
|
oveq1 |
⊢ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 49 |
|
eqid |
⊢ ( +g ‘ 𝐺 ) = ( +g ‘ 𝐺 ) |
| 50 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝐺 ∈ CMnd ) |
| 51 |
4
|
resexd |
⊢ ( 𝜑 → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V ) |
| 52 |
51
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ∈ V ) |
| 53 |
|
resss |
⊢ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴 |
| 54 |
|
fssres |
⊢ ( ( 𝐹 : 𝐴 ⟶ 𝐵 ∧ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⊆ 𝐴 ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) |
| 55 |
8 53 54
|
sylancl |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) |
| 56 |
55
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) : ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ⟶ 𝐵 ) |
| 57 |
8
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 58 |
57
|
funresd |
⊢ ( 𝜑 → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 59 |
58
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) |
| 60 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 supp 0 ) ∈ Fin ) |
| 61 |
8 4
|
fexd |
⊢ ( 𝜑 → 𝐹 ∈ V ) |
| 62 |
2
|
fvexi |
⊢ 0 ∈ V |
| 63 |
|
ressuppss |
⊢ ( ( 𝐹 ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 64 |
61 62 63
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 66 |
60 65
|
ssfid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) |
| 67 |
61
|
resexd |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V ) |
| 68 |
|
isfsupp |
⊢ ( ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 69 |
67 62 68
|
sylancl |
⊢ ( 𝜑 → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 70 |
69
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ↔ ( Fun ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ∧ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) supp 0 ) ∈ Fin ) ) ) |
| 71 |
59 66 70
|
mpbir2and |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) finSupp 0 ) |
| 72 |
|
simprr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ¬ 𝑧 ∈ 𝑦 ) |
| 73 |
|
disjsn |
⊢ ( ( 𝑦 ∩ { 𝑧 } ) = ∅ ↔ ¬ 𝑧 ∈ 𝑦 ) |
| 74 |
72 73
|
sylibr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝑦 ∩ { 𝑧 } ) = ∅ ) |
| 75 |
74
|
reseq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( 𝐴 ↾ ∅ ) ) |
| 76 |
|
resindi |
⊢ ( 𝐴 ↾ ( 𝑦 ∩ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) ) |
| 77 |
75 76 14
|
3eqtr3g |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐴 ↾ 𝑦 ) ∩ ( 𝐴 ↾ { 𝑧 } ) ) = ∅ ) |
| 78 |
|
resundi |
⊢ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) ) |
| 79 |
78
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) = ( ( 𝐴 ↾ 𝑦 ) ∪ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 80 |
1 2 49 50 52 56 71 77 79
|
gsumsplit |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 81 |
|
ssun1 |
⊢ 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 82 |
|
ssres2 |
⊢ ( 𝑦 ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ 𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 83 |
|
resabs1 |
⊢ ( ( 𝐴 ↾ 𝑦 ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) |
| 84 |
81 82 83
|
mp2b |
⊢ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) = ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) |
| 85 |
84
|
oveq2i |
⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) |
| 86 |
|
ssun2 |
⊢ { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) |
| 87 |
|
ssres2 |
⊢ ( { 𝑧 } ⊆ ( 𝑦 ∪ { 𝑧 } ) → ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) |
| 88 |
|
resabs1 |
⊢ ( ( 𝐴 ↾ { 𝑧 } ) ⊆ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) → ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 89 |
86 87 88
|
mp2b |
⊢ ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) |
| 90 |
89
|
oveq2i |
⊢ ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 91 |
85 90
|
oveq12i |
⊢ ( ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 92 |
80 91
|
eqtrdi |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 93 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑦 ∈ Fin ) |
| 94 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 95 |
94
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) ∧ 𝑗 ∈ 𝑦 ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 96 |
|
vex |
⊢ 𝑧 ∈ V |
| 97 |
96
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → 𝑧 ∈ V ) |
| 98 |
|
sneq |
⊢ ( 𝑗 = 𝑧 → { 𝑗 } = { 𝑧 } ) |
| 99 |
98
|
imaeq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝐴 “ { 𝑗 } ) = ( 𝐴 “ { 𝑧 } ) ) |
| 100 |
|
oveq1 |
⊢ ( 𝑗 = 𝑧 → ( 𝑗 𝐹 𝑘 ) = ( 𝑧 𝐹 𝑘 ) ) |
| 101 |
99 100
|
mpteq12dv |
⊢ ( 𝑗 = 𝑧 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) |
| 102 |
101
|
oveq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) |
| 103 |
102
|
eleq1d |
⊢ ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ) |
| 104 |
103
|
imbi2d |
⊢ ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) ) ) |
| 105 |
104 94
|
chvarvv |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 106 |
105
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ∈ 𝐵 ) |
| 107 |
1 49 50 93 95 97 72 106 102
|
gsumunsn |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) ) |
| 108 |
98
|
reseq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝐴 ↾ { 𝑗 } ) = ( 𝐴 ↾ { 𝑧 } ) ) |
| 109 |
108
|
reseq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) |
| 110 |
109
|
oveq2d |
⊢ ( 𝑗 = 𝑧 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 111 |
102 110
|
eqeq12d |
⊢ ( 𝑗 = 𝑧 → ( ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ↔ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 112 |
111
|
imbi2d |
⊢ ( 𝑗 = 𝑧 → ( ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ) ↔ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) ) |
| 113 |
|
imaexg |
⊢ ( 𝐴 ∈ 𝑉 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 114 |
4 113
|
syl |
⊢ ( 𝜑 → ( 𝐴 “ { 𝑗 } ) ∈ V ) |
| 115 |
|
vex |
⊢ 𝑗 ∈ V |
| 116 |
|
vex |
⊢ 𝑘 ∈ V |
| 117 |
115 116
|
elimasn |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↔ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 118 |
|
df-ov |
⊢ ( 𝑗 𝐹 𝑘 ) = ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) |
| 119 |
8
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) ∈ 𝐵 ) |
| 120 |
118 119
|
eqeltrid |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 121 |
117 120
|
sylan2b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ) → ( 𝑗 𝐹 𝑘 ) ∈ 𝐵 ) |
| 122 |
121
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) : ( 𝐴 “ { 𝑗 } ) ⟶ 𝐵 ) |
| 123 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) |
| 124 |
123
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 125 |
|
rnfi |
⊢ ( ( 𝐹 supp 0 ) ∈ Fin → ran ( 𝐹 supp 0 ) ∈ Fin ) |
| 126 |
10 125
|
syl |
⊢ ( 𝜑 → ran ( 𝐹 supp 0 ) ∈ Fin ) |
| 127 |
117
|
biimpi |
⊢ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) → 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ) |
| 128 |
115 116
|
opelrn |
⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) → 𝑘 ∈ ran ( 𝐹 supp 0 ) ) |
| 129 |
128
|
con3i |
⊢ ( ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) → ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) |
| 130 |
127 129
|
anim12i |
⊢ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) → ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
| 131 |
|
eldif |
⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ↔ ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ∧ ¬ 𝑘 ∈ ran ( 𝐹 supp 0 ) ) ) |
| 132 |
|
eldif |
⊢ ( 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ↔ ( 〈 𝑗 , 𝑘 〉 ∈ 𝐴 ∧ ¬ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐹 supp 0 ) ) ) |
| 133 |
130 131 132
|
3imtr4i |
⊢ ( 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) → 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) |
| 134 |
|
ssidd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) ⊆ ( 𝐹 supp 0 ) ) |
| 135 |
62
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 136 |
8 134 4 135
|
suppssr |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝐹 ‘ 〈 𝑗 , 𝑘 〉 ) = 0 ) |
| 137 |
118 136
|
eqtrid |
⊢ ( ( 𝜑 ∧ 〈 𝑗 , 𝑘 〉 ∈ ( 𝐴 ∖ ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 138 |
133 137
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ( ( 𝐴 “ { 𝑗 } ) ∖ ran ( 𝐹 supp 0 ) ) ) → ( 𝑗 𝐹 𝑘 ) = 0 ) |
| 139 |
138 114
|
suppss2 |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ⊆ ran ( 𝐹 supp 0 ) ) |
| 140 |
126 139
|
ssfid |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) |
| 141 |
114
|
mptexd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V ) |
| 142 |
|
isfsupp |
⊢ ( ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) ) |
| 143 |
141 62 142
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ↔ ( Fun ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∧ ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) supp 0 ) ∈ Fin ) ) ) |
| 144 |
124 140 143
|
mpbir2and |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) finSupp 0 ) |
| 145 |
|
2ndconst |
⊢ ( 𝑗 ∈ V → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) ) |
| 146 |
115 145
|
mp1i |
⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) : ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) –1-1-onto→ ( 𝐴 “ { 𝑗 } ) ) |
| 147 |
1 2 3 114 122 144 146
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) ) |
| 148 |
|
1st2nd2 |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 ) |
| 149 |
|
xp1st |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st ‘ 𝑥 ) ∈ { 𝑗 } ) |
| 150 |
|
elsni |
⊢ ( ( 1st ‘ 𝑥 ) ∈ { 𝑗 } → ( 1st ‘ 𝑥 ) = 𝑗 ) |
| 151 |
149 150
|
syl |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 1st ‘ 𝑥 ) = 𝑗 ) |
| 152 |
151
|
opeq1d |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 〈 ( 1st ‘ 𝑥 ) , ( 2nd ‘ 𝑥 ) 〉 = 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) |
| 153 |
148 152
|
eqtrd |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → 𝑥 = 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) |
| 154 |
153
|
fveq2d |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) ) |
| 155 |
|
df-ov |
⊢ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) = ( 𝐹 ‘ 〈 𝑗 , ( 2nd ‘ 𝑥 ) 〉 ) |
| 156 |
154 155
|
eqtr4di |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 𝐹 ‘ 𝑥 ) = ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) |
| 157 |
156
|
mpteq2ia |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) |
| 158 |
8
|
feqmptd |
⊢ ( 𝜑 → 𝐹 = ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 159 |
158
|
reseq1d |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) |
| 160 |
|
resss |
⊢ ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴 |
| 161 |
|
resmpt |
⊢ ( ( 𝐴 ↾ { 𝑗 } ) ⊆ 𝐴 → ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 162 |
160 161
|
ax-mp |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 163 |
|
ressn |
⊢ ( 𝐴 ↾ { 𝑗 } ) = ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) |
| 164 |
163
|
mpteq1i |
⊢ ( 𝑥 ∈ ( 𝐴 ↾ { 𝑗 } ) ↦ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 165 |
162 164
|
eqtri |
⊢ ( ( 𝑥 ∈ 𝐴 ↦ ( 𝐹 ‘ 𝑥 ) ) ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) |
| 166 |
159 165
|
eqtrdi |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 167 |
|
xp2nd |
⊢ ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) ) |
| 168 |
167
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) → ( 2nd ‘ 𝑥 ) ∈ ( 𝐴 “ { 𝑗 } ) ) |
| 169 |
|
fo2nd |
⊢ 2nd : V –onto→ V |
| 170 |
|
fof |
⊢ ( 2nd : V –onto→ V → 2nd : V ⟶ V ) |
| 171 |
169 170
|
mp1i |
⊢ ( 𝜑 → 2nd : V ⟶ V ) |
| 172 |
171
|
feqmptd |
⊢ ( 𝜑 → 2nd = ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 173 |
172
|
reseq1d |
⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) |
| 174 |
|
ssv |
⊢ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V |
| 175 |
|
resmpt |
⊢ ( ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ⊆ V → ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 176 |
174 175
|
ax-mp |
⊢ ( ( 𝑥 ∈ V ↦ ( 2nd ‘ 𝑥 ) ) ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) |
| 177 |
173 176
|
eqtrdi |
⊢ ( 𝜑 → ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 2nd ‘ 𝑥 ) ) ) |
| 178 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) = ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) |
| 179 |
|
oveq2 |
⊢ ( 𝑘 = ( 2nd ‘ 𝑥 ) → ( 𝑗 𝐹 𝑘 ) = ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) |
| 180 |
168 177 178 179
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) = ( 𝑥 ∈ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ↦ ( 𝑗 𝐹 ( 2nd ‘ 𝑥 ) ) ) ) |
| 181 |
157 166 180
|
3eqtr4a |
⊢ ( 𝜑 → ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) = ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) |
| 182 |
181
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ∘ ( 2nd ↾ ( { 𝑗 } × ( 𝐴 “ { 𝑗 } ) ) ) ) ) ) |
| 183 |
147 182
|
eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑗 } ) ) ) ) |
| 184 |
112 183
|
chvarvv |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 185 |
184
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) = ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) |
| 186 |
185
|
oveq2d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑧 } ) ↦ ( 𝑧 𝐹 𝑘 ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 187 |
107 186
|
eqtrd |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) |
| 188 |
92 187
|
eqeq12d |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ↔ ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) = ( ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ( +g ‘ 𝐺 ) ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ { 𝑧 } ) ) ) ) ) ) |
| 189 |
48 188
|
imbitrrid |
⊢ ( ( 𝜑 ∧ ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) ) → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 190 |
189
|
expcom |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( 𝜑 → ( ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 191 |
190
|
a2d |
⊢ ( ( 𝑦 ∈ Fin ∧ ¬ 𝑧 ∈ 𝑦 ) → ( ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ 𝑦 ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑦 ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ ( 𝑦 ∪ { 𝑧 } ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ ( 𝑦 ∪ { 𝑧 } ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) ) |
| 192 |
25 32 39 46 47 191
|
findcard2s |
⊢ ( dom ( 𝐹 supp 0 ) ∈ Fin → ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) ) |
| 193 |
12 192
|
mpcom |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝐹 ↾ ( 𝐴 ↾ dom ( 𝐹 supp 0 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ dom ( 𝐹 supp 0 ) ↦ ( 𝐺 Σg ( 𝑘 ∈ ( 𝐴 “ { 𝑗 } ) ↦ ( 𝑗 𝐹 𝑘 ) ) ) ) ) ) |