| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d.b |
|- B = ( Base ` G ) |
| 2 |
|
gsum2d.z |
|- .0. = ( 0g ` G ) |
| 3 |
|
gsum2d.g |
|- ( ph -> G e. CMnd ) |
| 4 |
|
gsum2d.a |
|- ( ph -> A e. V ) |
| 5 |
|
gsum2d.r |
|- ( ph -> Rel A ) |
| 6 |
|
gsum2d.d |
|- ( ph -> D e. W ) |
| 7 |
|
gsum2d.s |
|- ( ph -> dom A C_ D ) |
| 8 |
|
gsum2d.f |
|- ( ph -> F : A --> B ) |
| 9 |
|
gsum2d.w |
|- ( ph -> F finSupp .0. ) |
| 10 |
9
|
fsuppimpd |
|- ( ph -> ( F supp .0. ) e. Fin ) |
| 11 |
|
dmfi |
|- ( ( F supp .0. ) e. Fin -> dom ( F supp .0. ) e. Fin ) |
| 12 |
10 11
|
syl |
|- ( ph -> dom ( F supp .0. ) e. Fin ) |
| 13 |
|
reseq2 |
|- ( x = (/) -> ( A |` x ) = ( A |` (/) ) ) |
| 14 |
|
res0 |
|- ( A |` (/) ) = (/) |
| 15 |
13 14
|
eqtrdi |
|- ( x = (/) -> ( A |` x ) = (/) ) |
| 16 |
15
|
reseq2d |
|- ( x = (/) -> ( F |` ( A |` x ) ) = ( F |` (/) ) ) |
| 17 |
|
res0 |
|- ( F |` (/) ) = (/) |
| 18 |
16 17
|
eqtrdi |
|- ( x = (/) -> ( F |` ( A |` x ) ) = (/) ) |
| 19 |
18
|
oveq2d |
|- ( x = (/) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum (/) ) ) |
| 20 |
|
mpteq1 |
|- ( x = (/) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. (/) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 21 |
|
mpt0 |
|- ( j e. (/) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = (/) |
| 22 |
20 21
|
eqtrdi |
|- ( x = (/) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = (/) ) |
| 23 |
22
|
oveq2d |
|- ( x = (/) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum (/) ) ) |
| 24 |
19 23
|
eqeq12d |
|- ( x = (/) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum (/) ) = ( G gsum (/) ) ) ) |
| 25 |
24
|
imbi2d |
|- ( x = (/) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum (/) ) = ( G gsum (/) ) ) ) ) |
| 26 |
|
reseq2 |
|- ( x = y -> ( A |` x ) = ( A |` y ) ) |
| 27 |
26
|
reseq2d |
|- ( x = y -> ( F |` ( A |` x ) ) = ( F |` ( A |` y ) ) ) |
| 28 |
27
|
oveq2d |
|- ( x = y -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` y ) ) ) ) |
| 29 |
|
mpteq1 |
|- ( x = y -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 30 |
29
|
oveq2d |
|- ( x = y -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 31 |
28 30
|
eqeq12d |
|- ( x = y -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 32 |
31
|
imbi2d |
|- ( x = y -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 33 |
|
reseq2 |
|- ( x = ( y u. { z } ) -> ( A |` x ) = ( A |` ( y u. { z } ) ) ) |
| 34 |
33
|
reseq2d |
|- ( x = ( y u. { z } ) -> ( F |` ( A |` x ) ) = ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 35 |
34
|
oveq2d |
|- ( x = ( y u. { z } ) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) ) |
| 36 |
|
mpteq1 |
|- ( x = ( y u. { z } ) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 37 |
36
|
oveq2d |
|- ( x = ( y u. { z } ) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 38 |
35 37
|
eqeq12d |
|- ( x = ( y u. { z } ) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 39 |
38
|
imbi2d |
|- ( x = ( y u. { z } ) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 40 |
|
reseq2 |
|- ( x = dom ( F supp .0. ) -> ( A |` x ) = ( A |` dom ( F supp .0. ) ) ) |
| 41 |
40
|
reseq2d |
|- ( x = dom ( F supp .0. ) -> ( F |` ( A |` x ) ) = ( F |` ( A |` dom ( F supp .0. ) ) ) ) |
| 42 |
41
|
oveq2d |
|- ( x = dom ( F supp .0. ) -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) ) |
| 43 |
|
mpteq1 |
|- ( x = dom ( F supp .0. ) -> ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) = ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) |
| 44 |
43
|
oveq2d |
|- ( x = dom ( F supp .0. ) -> ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |
| 45 |
42 44
|
eqeq12d |
|- ( x = dom ( F supp .0. ) -> ( ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 46 |
45
|
imbi2d |
|- ( x = dom ( F supp .0. ) -> ( ( ph -> ( G gsum ( F |` ( A |` x ) ) ) = ( G gsum ( j e. x |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) <-> ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 47 |
|
eqidd |
|- ( ph -> ( G gsum (/) ) = ( G gsum (/) ) ) |
| 48 |
|
oveq1 |
|- ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 49 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 50 |
3
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> G e. CMnd ) |
| 51 |
4
|
resexd |
|- ( ph -> ( A |` ( y u. { z } ) ) e. _V ) |
| 52 |
51
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y u. { z } ) ) e. _V ) |
| 53 |
|
resss |
|- ( A |` ( y u. { z } ) ) C_ A |
| 54 |
|
fssres |
|- ( ( F : A --> B /\ ( A |` ( y u. { z } ) ) C_ A ) -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
| 55 |
8 53 54
|
sylancl |
|- ( ph -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
| 56 |
55
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F |` ( A |` ( y u. { z } ) ) ) : ( A |` ( y u. { z } ) ) --> B ) |
| 57 |
8
|
ffund |
|- ( ph -> Fun F ) |
| 58 |
57
|
funresd |
|- ( ph -> Fun ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 59 |
58
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> Fun ( F |` ( A |` ( y u. { z } ) ) ) ) |
| 60 |
10
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F supp .0. ) e. Fin ) |
| 61 |
8 4
|
fexd |
|- ( ph -> F e. _V ) |
| 62 |
2
|
fvexi |
|- .0. e. _V |
| 63 |
|
ressuppss |
|- ( ( F e. _V /\ .0. e. _V ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 64 |
61 62 63
|
sylancl |
|- ( ph -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) C_ ( F supp .0. ) ) |
| 66 |
60 65
|
ssfid |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) |
| 67 |
61
|
resexd |
|- ( ph -> ( F |` ( A |` ( y u. { z } ) ) ) e. _V ) |
| 68 |
|
isfsupp |
|- ( ( ( F |` ( A |` ( y u. { z } ) ) ) e. _V /\ .0. e. _V ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
| 69 |
67 62 68
|
sylancl |
|- ( ph -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
| 70 |
69
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. <-> ( Fun ( F |` ( A |` ( y u. { z } ) ) ) /\ ( ( F |` ( A |` ( y u. { z } ) ) ) supp .0. ) e. Fin ) ) ) |
| 71 |
59 66 70
|
mpbir2and |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( F |` ( A |` ( y u. { z } ) ) ) finSupp .0. ) |
| 72 |
|
simprr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> -. z e. y ) |
| 73 |
|
disjsn |
|- ( ( y i^i { z } ) = (/) <-> -. z e. y ) |
| 74 |
72 73
|
sylibr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( y i^i { z } ) = (/) ) |
| 75 |
74
|
reseq2d |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y i^i { z } ) ) = ( A |` (/) ) ) |
| 76 |
|
resindi |
|- ( A |` ( y i^i { z } ) ) = ( ( A |` y ) i^i ( A |` { z } ) ) |
| 77 |
75 76 14
|
3eqtr3g |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( A |` y ) i^i ( A |` { z } ) ) = (/) ) |
| 78 |
|
resundi |
|- ( A |` ( y u. { z } ) ) = ( ( A |` y ) u. ( A |` { z } ) ) |
| 79 |
78
|
a1i |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( A |` ( y u. { z } ) ) = ( ( A |` y ) u. ( A |` { z } ) ) ) |
| 80 |
1 2 49 50 52 56 71 77 79
|
gsumsplit |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) ) ) |
| 81 |
|
ssun1 |
|- y C_ ( y u. { z } ) |
| 82 |
|
ssres2 |
|- ( y C_ ( y u. { z } ) -> ( A |` y ) C_ ( A |` ( y u. { z } ) ) ) |
| 83 |
|
resabs1 |
|- ( ( A |` y ) C_ ( A |` ( y u. { z } ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) = ( F |` ( A |` y ) ) ) |
| 84 |
81 82 83
|
mp2b |
|- ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) = ( F |` ( A |` y ) ) |
| 85 |
84
|
oveq2i |
|- ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) = ( G gsum ( F |` ( A |` y ) ) ) |
| 86 |
|
ssun2 |
|- { z } C_ ( y u. { z } ) |
| 87 |
|
ssres2 |
|- ( { z } C_ ( y u. { z } ) -> ( A |` { z } ) C_ ( A |` ( y u. { z } ) ) ) |
| 88 |
|
resabs1 |
|- ( ( A |` { z } ) C_ ( A |` ( y u. { z } ) ) -> ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) = ( F |` ( A |` { z } ) ) ) |
| 89 |
86 87 88
|
mp2b |
|- ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) = ( F |` ( A |` { z } ) ) |
| 90 |
89
|
oveq2i |
|- ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) |
| 91 |
85 90
|
oveq12i |
|- ( ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( ( F |` ( A |` ( y u. { z } ) ) ) |` ( A |` { z } ) ) ) ) = ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 92 |
80 91
|
eqtrdi |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 93 |
|
simprl |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> y e. Fin ) |
| 94 |
1 2 3 4 5 6 7 8 9
|
gsum2dlem1 |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 95 |
94
|
ad2antrr |
|- ( ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) /\ j e. y ) -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) |
| 96 |
|
vex |
|- z e. _V |
| 97 |
96
|
a1i |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> z e. _V ) |
| 98 |
|
sneq |
|- ( j = z -> { j } = { z } ) |
| 99 |
98
|
imaeq2d |
|- ( j = z -> ( A " { j } ) = ( A " { z } ) ) |
| 100 |
|
oveq1 |
|- ( j = z -> ( j F k ) = ( z F k ) ) |
| 101 |
99 100
|
mpteq12dv |
|- ( j = z -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { z } ) |-> ( z F k ) ) ) |
| 102 |
101
|
oveq2d |
|- ( j = z -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) |
| 103 |
102
|
eleq1d |
|- ( j = z -> ( ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B <-> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) ) |
| 104 |
103
|
imbi2d |
|- ( j = z -> ( ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) e. B ) <-> ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) ) ) |
| 105 |
104 94
|
chvarvv |
|- ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) |
| 106 |
105
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) e. B ) |
| 107 |
1 49 50 93 95 97 72 106 102
|
gsumunsn |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) ) |
| 108 |
98
|
reseq2d |
|- ( j = z -> ( A |` { j } ) = ( A |` { z } ) ) |
| 109 |
108
|
reseq2d |
|- ( j = z -> ( F |` ( A |` { j } ) ) = ( F |` ( A |` { z } ) ) ) |
| 110 |
109
|
oveq2d |
|- ( j = z -> ( G gsum ( F |` ( A |` { j } ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 111 |
102 110
|
eqeq12d |
|- ( j = z -> ( ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) <-> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 112 |
111
|
imbi2d |
|- ( j = z -> ( ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) ) <-> ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) ) ) |
| 113 |
|
imaexg |
|- ( A e. V -> ( A " { j } ) e. _V ) |
| 114 |
4 113
|
syl |
|- ( ph -> ( A " { j } ) e. _V ) |
| 115 |
|
vex |
|- j e. _V |
| 116 |
|
vex |
|- k e. _V |
| 117 |
115 116
|
elimasn |
|- ( k e. ( A " { j } ) <-> <. j , k >. e. A ) |
| 118 |
|
df-ov |
|- ( j F k ) = ( F ` <. j , k >. ) |
| 119 |
8
|
ffvelcdmda |
|- ( ( ph /\ <. j , k >. e. A ) -> ( F ` <. j , k >. ) e. B ) |
| 120 |
118 119
|
eqeltrid |
|- ( ( ph /\ <. j , k >. e. A ) -> ( j F k ) e. B ) |
| 121 |
117 120
|
sylan2b |
|- ( ( ph /\ k e. ( A " { j } ) ) -> ( j F k ) e. B ) |
| 122 |
121
|
fmpttd |
|- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) : ( A " { j } ) --> B ) |
| 123 |
|
funmpt |
|- Fun ( k e. ( A " { j } ) |-> ( j F k ) ) |
| 124 |
123
|
a1i |
|- ( ph -> Fun ( k e. ( A " { j } ) |-> ( j F k ) ) ) |
| 125 |
|
rnfi |
|- ( ( F supp .0. ) e. Fin -> ran ( F supp .0. ) e. Fin ) |
| 126 |
10 125
|
syl |
|- ( ph -> ran ( F supp .0. ) e. Fin ) |
| 127 |
117
|
biimpi |
|- ( k e. ( A " { j } ) -> <. j , k >. e. A ) |
| 128 |
115 116
|
opelrn |
|- ( <. j , k >. e. ( F supp .0. ) -> k e. ran ( F supp .0. ) ) |
| 129 |
128
|
con3i |
|- ( -. k e. ran ( F supp .0. ) -> -. <. j , k >. e. ( F supp .0. ) ) |
| 130 |
127 129
|
anim12i |
|- ( ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) -> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
| 131 |
|
eldif |
|- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) <-> ( k e. ( A " { j } ) /\ -. k e. ran ( F supp .0. ) ) ) |
| 132 |
|
eldif |
|- ( <. j , k >. e. ( A \ ( F supp .0. ) ) <-> ( <. j , k >. e. A /\ -. <. j , k >. e. ( F supp .0. ) ) ) |
| 133 |
130 131 132
|
3imtr4i |
|- ( k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) -> <. j , k >. e. ( A \ ( F supp .0. ) ) ) |
| 134 |
|
ssidd |
|- ( ph -> ( F supp .0. ) C_ ( F supp .0. ) ) |
| 135 |
62
|
a1i |
|- ( ph -> .0. e. _V ) |
| 136 |
8 134 4 135
|
suppssr |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( F ` <. j , k >. ) = .0. ) |
| 137 |
118 136
|
eqtrid |
|- ( ( ph /\ <. j , k >. e. ( A \ ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 138 |
133 137
|
sylan2 |
|- ( ( ph /\ k e. ( ( A " { j } ) \ ran ( F supp .0. ) ) ) -> ( j F k ) = .0. ) |
| 139 |
138 114
|
suppss2 |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) C_ ran ( F supp .0. ) ) |
| 140 |
126 139
|
ssfid |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) |
| 141 |
114
|
mptexd |
|- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) e. _V ) |
| 142 |
|
isfsupp |
|- ( ( ( k e. ( A " { j } ) |-> ( j F k ) ) e. _V /\ .0. e. _V ) -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. <-> ( Fun ( k e. ( A " { j } ) |-> ( j F k ) ) /\ ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) ) ) |
| 143 |
141 62 142
|
sylancl |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. <-> ( Fun ( k e. ( A " { j } ) |-> ( j F k ) ) /\ ( ( k e. ( A " { j } ) |-> ( j F k ) ) supp .0. ) e. Fin ) ) ) |
| 144 |
124 140 143
|
mpbir2and |
|- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) finSupp .0. ) |
| 145 |
|
2ndconst |
|- ( j e. _V -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) : ( { j } X. ( A " { j } ) ) -1-1-onto-> ( A " { j } ) ) |
| 146 |
115 145
|
mp1i |
|- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) : ( { j } X. ( A " { j } ) ) -1-1-onto-> ( A " { j } ) ) |
| 147 |
1 2 3 114 122 144 146
|
gsumf1o |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) ) |
| 148 |
|
1st2nd2 |
|- ( x e. ( { j } X. ( A " { j } ) ) -> x = <. ( 1st ` x ) , ( 2nd ` x ) >. ) |
| 149 |
|
xp1st |
|- ( x e. ( { j } X. ( A " { j } ) ) -> ( 1st ` x ) e. { j } ) |
| 150 |
|
elsni |
|- ( ( 1st ` x ) e. { j } -> ( 1st ` x ) = j ) |
| 151 |
149 150
|
syl |
|- ( x e. ( { j } X. ( A " { j } ) ) -> ( 1st ` x ) = j ) |
| 152 |
151
|
opeq1d |
|- ( x e. ( { j } X. ( A " { j } ) ) -> <. ( 1st ` x ) , ( 2nd ` x ) >. = <. j , ( 2nd ` x ) >. ) |
| 153 |
148 152
|
eqtrd |
|- ( x e. ( { j } X. ( A " { j } ) ) -> x = <. j , ( 2nd ` x ) >. ) |
| 154 |
153
|
fveq2d |
|- ( x e. ( { j } X. ( A " { j } ) ) -> ( F ` x ) = ( F ` <. j , ( 2nd ` x ) >. ) ) |
| 155 |
|
df-ov |
|- ( j F ( 2nd ` x ) ) = ( F ` <. j , ( 2nd ` x ) >. ) |
| 156 |
154 155
|
eqtr4di |
|- ( x e. ( { j } X. ( A " { j } ) ) -> ( F ` x ) = ( j F ( 2nd ` x ) ) ) |
| 157 |
156
|
mpteq2ia |
|- ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( j F ( 2nd ` x ) ) ) |
| 158 |
8
|
feqmptd |
|- ( ph -> F = ( x e. A |-> ( F ` x ) ) ) |
| 159 |
158
|
reseq1d |
|- ( ph -> ( F |` ( A |` { j } ) ) = ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) ) |
| 160 |
|
resss |
|- ( A |` { j } ) C_ A |
| 161 |
|
resmpt |
|- ( ( A |` { j } ) C_ A -> ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( A |` { j } ) |-> ( F ` x ) ) ) |
| 162 |
160 161
|
ax-mp |
|- ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( A |` { j } ) |-> ( F ` x ) ) |
| 163 |
|
ressn |
|- ( A |` { j } ) = ( { j } X. ( A " { j } ) ) |
| 164 |
163
|
mpteq1i |
|- ( x e. ( A |` { j } ) |-> ( F ` x ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) |
| 165 |
162 164
|
eqtri |
|- ( ( x e. A |-> ( F ` x ) ) |` ( A |` { j } ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) |
| 166 |
159 165
|
eqtrdi |
|- ( ph -> ( F |` ( A |` { j } ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( F ` x ) ) ) |
| 167 |
|
xp2nd |
|- ( x e. ( { j } X. ( A " { j } ) ) -> ( 2nd ` x ) e. ( A " { j } ) ) |
| 168 |
167
|
adantl |
|- ( ( ph /\ x e. ( { j } X. ( A " { j } ) ) ) -> ( 2nd ` x ) e. ( A " { j } ) ) |
| 169 |
|
fo2nd |
|- 2nd : _V -onto-> _V |
| 170 |
|
fof |
|- ( 2nd : _V -onto-> _V -> 2nd : _V --> _V ) |
| 171 |
169 170
|
mp1i |
|- ( ph -> 2nd : _V --> _V ) |
| 172 |
171
|
feqmptd |
|- ( ph -> 2nd = ( x e. _V |-> ( 2nd ` x ) ) ) |
| 173 |
172
|
reseq1d |
|- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) = ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) ) |
| 174 |
|
ssv |
|- ( { j } X. ( A " { j } ) ) C_ _V |
| 175 |
|
resmpt |
|- ( ( { j } X. ( A " { j } ) ) C_ _V -> ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) ) |
| 176 |
174 175
|
ax-mp |
|- ( ( x e. _V |-> ( 2nd ` x ) ) |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) |
| 177 |
173 176
|
eqtrdi |
|- ( ph -> ( 2nd |` ( { j } X. ( A " { j } ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( 2nd ` x ) ) ) |
| 178 |
|
eqidd |
|- ( ph -> ( k e. ( A " { j } ) |-> ( j F k ) ) = ( k e. ( A " { j } ) |-> ( j F k ) ) ) |
| 179 |
|
oveq2 |
|- ( k = ( 2nd ` x ) -> ( j F k ) = ( j F ( 2nd ` x ) ) ) |
| 180 |
168 177 178 179
|
fmptco |
|- ( ph -> ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) = ( x e. ( { j } X. ( A " { j } ) ) |-> ( j F ( 2nd ` x ) ) ) ) |
| 181 |
157 166 180
|
3eqtr4a |
|- ( ph -> ( F |` ( A |` { j } ) ) = ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) |
| 182 |
181
|
oveq2d |
|- ( ph -> ( G gsum ( F |` ( A |` { j } ) ) ) = ( G gsum ( ( k e. ( A " { j } ) |-> ( j F k ) ) o. ( 2nd |` ( { j } X. ( A " { j } ) ) ) ) ) ) |
| 183 |
147 182
|
eqtr4d |
|- ( ph -> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) = ( G gsum ( F |` ( A |` { j } ) ) ) ) |
| 184 |
112 183
|
chvarvv |
|- ( ph -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 185 |
184
|
adantr |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) = ( G gsum ( F |` ( A |` { z } ) ) ) ) |
| 186 |
185
|
oveq2d |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( k e. ( A " { z } ) |-> ( z F k ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 187 |
107 186
|
eqtrd |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) |
| 188 |
92 187
|
eqeq12d |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) <-> ( ( G gsum ( F |` ( A |` y ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) = ( ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ( +g ` G ) ( G gsum ( F |` ( A |` { z } ) ) ) ) ) ) |
| 189 |
48 188
|
imbitrrid |
|- ( ( ph /\ ( y e. Fin /\ -. z e. y ) ) -> ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 190 |
189
|
expcom |
|- ( ( y e. Fin /\ -. z e. y ) -> ( ph -> ( ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 191 |
190
|
a2d |
|- ( ( y e. Fin /\ -. z e. y ) -> ( ( ph -> ( G gsum ( F |` ( A |` y ) ) ) = ( G gsum ( j e. y |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) -> ( ph -> ( G gsum ( F |` ( A |` ( y u. { z } ) ) ) ) = ( G gsum ( j e. ( y u. { z } ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) ) |
| 192 |
25 32 39 46 47 191
|
findcard2s |
|- ( dom ( F supp .0. ) e. Fin -> ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) ) |
| 193 |
12 192
|
mpcom |
|- ( ph -> ( G gsum ( F |` ( A |` dom ( F supp .0. ) ) ) ) = ( G gsum ( j e. dom ( F supp .0. ) |-> ( G gsum ( k e. ( A " { j } ) |-> ( j F k ) ) ) ) ) ) |