Description: A restriction to the empty set is empty. (Contributed by NM, 12-Nov-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | res0 | |- ( A |` (/) ) = (/) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-res | |- ( A |` (/) ) = ( A i^i ( (/) X. _V ) ) |
|
2 | 0xp | |- ( (/) X. _V ) = (/) |
|
3 | 2 | ineq2i | |- ( A i^i ( (/) X. _V ) ) = ( A i^i (/) ) |
4 | in0 | |- ( A i^i (/) ) = (/) |
|
5 | 1 3 4 | 3eqtri | |- ( A |` (/) ) = (/) |