Metamath Proof Explorer


Theorem ssind

Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)

Ref Expression
Hypotheses ssind.1 ( 𝜑𝐴𝐵 )
ssind.2 ( 𝜑𝐴𝐶 )
Assertion ssind ( 𝜑𝐴 ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssind.1 ( 𝜑𝐴𝐵 )
2 ssind.2 ( 𝜑𝐴𝐶 )
3 1 2 jca ( 𝜑 → ( 𝐴𝐵𝐴𝐶 ) )
4 ssin ( ( 𝐴𝐵𝐴𝐶 ) ↔ 𝐴 ⊆ ( 𝐵𝐶 ) )
5 3 4 sylib ( 𝜑𝐴 ⊆ ( 𝐵𝐶 ) )