Description: A deduction showing that a subclass of two classes is a subclass of their intersection. (Contributed by Jonathan Ben-Naim, 3-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ssind.1 | |- ( ph -> A C_ B ) |
|
ssind.2 | |- ( ph -> A C_ C ) |
||
Assertion | ssind | |- ( ph -> A C_ ( B i^i C ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssind.1 | |- ( ph -> A C_ B ) |
|
2 | ssind.2 | |- ( ph -> A C_ C ) |
|
3 | 1 2 | jca | |- ( ph -> ( A C_ B /\ A C_ C ) ) |
4 | ssin | |- ( ( A C_ B /\ A C_ C ) <-> A C_ ( B i^i C ) ) |
|
5 | 3 4 | sylib | |- ( ph -> A C_ ( B i^i C ) ) |