| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elin | ⊢ ( 𝑥  ∈  ( 𝐵  ∩  𝐶 )  ↔  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) | 
						
							| 2 | 1 | imbi2i | ⊢ ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) ) | 
						
							| 3 | 2 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∩  𝐶 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) ) ) | 
						
							| 4 |  | jcab | ⊢ ( ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) )  ↔  ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) ) | 
						
							| 5 | 4 | albii | ⊢ ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  ( 𝑥  ∈  𝐵  ∧  𝑥  ∈  𝐶 ) )  ↔  ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) ) | 
						
							| 6 |  | 19.26 | ⊢ ( ∀ 𝑥 ( ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) )  ↔  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) ) | 
						
							| 7 | 3 5 6 | 3bitrri | ⊢ ( ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 8 |  | df-ss | ⊢ ( 𝐴  ⊆  𝐵  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 ) ) | 
						
							| 9 |  | df-ss | ⊢ ( 𝐴  ⊆  𝐶  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) | 
						
							| 10 | 8 9 | anbi12i | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ⊆  𝐶 )  ↔  ( ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐵 )  ∧  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  𝐶 ) ) ) | 
						
							| 11 |  | df-ss | ⊢ ( 𝐴  ⊆  ( 𝐵  ∩  𝐶 )  ↔  ∀ 𝑥 ( 𝑥  ∈  𝐴  →  𝑥  ∈  ( 𝐵  ∩  𝐶 ) ) ) | 
						
							| 12 | 7 10 11 | 3bitr4i | ⊢ ( ( 𝐴  ⊆  𝐵  ∧  𝐴  ⊆  𝐶 )  ↔  𝐴  ⊆  ( 𝐵  ∩  𝐶 ) ) |