Metamath Proof Explorer


Theorem ssin

Description: Subclass of intersection. Theorem 2.8(vii) of Monk1 p. 26. (Contributed by NM, 15-Jun-2004) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion ssin ABACABC

Proof

Step Hyp Ref Expression
1 elin xBCxBxC
2 1 imbi2i xAxBCxAxBxC
3 2 albii xxAxBCxxAxBxC
4 jcab xAxBxCxAxBxAxC
5 4 albii xxAxBxCxxAxBxAxC
6 19.26 xxAxBxAxCxxAxBxxAxC
7 3 5 6 3bitrri xxAxBxxAxCxxAxBC
8 dfss2 ABxxAxB
9 dfss2 ACxxAxC
10 8 9 anbi12i ABACxxAxBxxAxC
11 dfss2 ABCxxAxBC
12 7 10 11 3bitr4i ABACABC