| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsum2d2.b |
|
| 2 |
|
gsum2d2.z |
|
| 3 |
|
gsum2d2.g |
|
| 4 |
|
gsum2d2.a |
|
| 5 |
|
gsum2d2.r |
|
| 6 |
|
gsum2d2.f |
|
| 7 |
|
gsum2d2.u |
|
| 8 |
|
gsum2d2.n |
|
| 9 |
|
eqid |
|
| 10 |
9
|
mpofun |
|
| 11 |
10
|
a1i |
|
| 12 |
6
|
ralrimivva |
|
| 13 |
9
|
fmpox |
|
| 14 |
12 13
|
sylib |
|
| 15 |
|
nfv |
|
| 16 |
|
nfiu1 |
|
| 17 |
|
nfcv |
|
| 18 |
16 17
|
nfdif |
|
| 19 |
18
|
nfcri |
|
| 20 |
15 19
|
nfan |
|
| 21 |
|
nfmpo1 |
|
| 22 |
|
nfcv |
|
| 23 |
21 22
|
nffv |
|
| 24 |
23
|
nfeq1 |
|
| 25 |
|
relxp |
|
| 26 |
25
|
rgenw |
|
| 27 |
|
reliun |
|
| 28 |
26 27
|
mpbir |
|
| 29 |
|
eldifi |
|
| 30 |
29
|
adantl |
|
| 31 |
|
elrel |
|
| 32 |
28 30 31
|
sylancr |
|
| 33 |
|
nfv |
|
| 34 |
|
nfmpo2 |
|
| 35 |
|
nfcv |
|
| 36 |
34 35
|
nffv |
|
| 37 |
36
|
nfeq1 |
|
| 38 |
|
simprr |
|
| 39 |
38
|
fveq2d |
|
| 40 |
|
df-ov |
|
| 41 |
|
simprl |
|
| 42 |
38 41
|
eqeltrrd |
|
| 43 |
42
|
eldifad |
|
| 44 |
|
opeliunxp |
|
| 45 |
43 44
|
sylib |
|
| 46 |
45
|
simpld |
|
| 47 |
45
|
simprd |
|
| 48 |
45 6
|
syldan |
|
| 49 |
9
|
ovmpt4g |
|
| 50 |
46 47 48 49
|
syl3anc |
|
| 51 |
40 50
|
eqtr3id |
|
| 52 |
|
eldifn |
|
| 53 |
52
|
ad2antrl |
|
| 54 |
38
|
eleq1d |
|
| 55 |
|
df-br |
|
| 56 |
54 55
|
bitr4di |
|
| 57 |
53 56
|
mtbid |
|
| 58 |
45 57
|
jca |
|
| 59 |
58 8
|
syldan |
|
| 60 |
39 51 59
|
3eqtrd |
|
| 61 |
60
|
expr |
|
| 62 |
33 37 61
|
exlimd |
|
| 63 |
20 24 32 62
|
exlimimdd |
|
| 64 |
14 63
|
suppss |
|
| 65 |
7 64
|
ssfid |
|
| 66 |
5
|
ralrimiva |
|
| 67 |
9
|
mpoexxg |
|
| 68 |
4 66 67
|
syl2anc |
|
| 69 |
2
|
fvexi |
|
| 70 |
69
|
a1i |
|
| 71 |
|
isfsupp |
|
| 72 |
68 70 71
|
syl2anc |
|
| 73 |
11 65 72
|
mpbir2and |
|