Description: Lemma for gsum2d2 : show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsum2d2.b | |
|
gsum2d2.z | |
||
gsum2d2.g | |
||
gsum2d2.a | |
||
gsum2d2.r | |
||
gsum2d2.f | |
||
gsum2d2.u | |
||
gsum2d2.n | |
||
Assertion | gsum2d2lem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsum2d2.b | |
|
2 | gsum2d2.z | |
|
3 | gsum2d2.g | |
|
4 | gsum2d2.a | |
|
5 | gsum2d2.r | |
|
6 | gsum2d2.f | |
|
7 | gsum2d2.u | |
|
8 | gsum2d2.n | |
|
9 | eqid | |
|
10 | 9 | mpofun | |
11 | 10 | a1i | |
12 | 6 | ralrimivva | |
13 | 9 | fmpox | |
14 | 12 13 | sylib | |
15 | nfv | |
|
16 | nfiu1 | |
|
17 | nfcv | |
|
18 | 16 17 | nfdif | |
19 | 18 | nfcri | |
20 | 15 19 | nfan | |
21 | nfmpo1 | |
|
22 | nfcv | |
|
23 | 21 22 | nffv | |
24 | 23 | nfeq1 | |
25 | relxp | |
|
26 | 25 | rgenw | |
27 | reliun | |
|
28 | 26 27 | mpbir | |
29 | eldifi | |
|
30 | 29 | adantl | |
31 | elrel | |
|
32 | 28 30 31 | sylancr | |
33 | nfv | |
|
34 | nfmpo2 | |
|
35 | nfcv | |
|
36 | 34 35 | nffv | |
37 | 36 | nfeq1 | |
38 | simprr | |
|
39 | 38 | fveq2d | |
40 | df-ov | |
|
41 | simprl | |
|
42 | 38 41 | eqeltrrd | |
43 | 42 | eldifad | |
44 | opeliunxp | |
|
45 | 43 44 | sylib | |
46 | 45 | simpld | |
47 | 45 | simprd | |
48 | 45 6 | syldan | |
49 | 9 | ovmpt4g | |
50 | 46 47 48 49 | syl3anc | |
51 | 40 50 | eqtr3id | |
52 | eldifn | |
|
53 | 52 | ad2antrl | |
54 | 38 | eleq1d | |
55 | df-br | |
|
56 | 54 55 | bitr4di | |
57 | 53 56 | mtbid | |
58 | 45 57 | jca | |
59 | 58 8 | syldan | |
60 | 39 51 59 | 3eqtrd | |
61 | 60 | expr | |
62 | 33 37 61 | exlimd | |
63 | 20 24 32 62 | exlimimdd | |
64 | 14 63 | suppss | |
65 | 7 64 | ssfid | |
66 | 5 | ralrimiva | |
67 | 9 | mpoexxg | |
68 | 4 66 67 | syl2anc | |
69 | 2 | fvexi | |
70 | 69 | a1i | |
71 | isfsupp | |
|
72 | 68 70 71 | syl2anc | |
73 | 11 65 72 | mpbir2and | |