Metamath Proof Explorer


Theorem gsum2d2lem

Description: Lemma for gsum2d2 : show the function is finitely supported. (Contributed by Mario Carneiro, 28-Dec-2014) (Revised by AV, 9-Jun-2019)

Ref Expression
Hypotheses gsum2d2.b B=BaseG
gsum2d2.z 0˙=0G
gsum2d2.g φGCMnd
gsum2d2.a φAV
gsum2d2.r φjACW
gsum2d2.f φjAkCXB
gsum2d2.u φUFin
gsum2d2.n φjAkC¬jUkX=0˙
Assertion gsum2d2lem φfinSupp0˙jA,kCX

Proof

Step Hyp Ref Expression
1 gsum2d2.b B=BaseG
2 gsum2d2.z 0˙=0G
3 gsum2d2.g φGCMnd
4 gsum2d2.a φAV
5 gsum2d2.r φjACW
6 gsum2d2.f φjAkCXB
7 gsum2d2.u φUFin
8 gsum2d2.n φjAkC¬jUkX=0˙
9 eqid jA,kCX=jA,kCX
10 9 mpofun FunjA,kCX
11 10 a1i φFunjA,kCX
12 6 ralrimivva φjAkCXB
13 9 fmpox jAkCXBjA,kCX:jAj×CB
14 12 13 sylib φjA,kCX:jAj×CB
15 nfv jφ
16 nfiu1 _jjAj×C
17 nfcv _jU
18 16 17 nfdif _jjAj×CU
19 18 nfcri jzjAj×CU
20 15 19 nfan jφzjAj×CU
21 nfmpo1 _jjA,kCX
22 nfcv _jz
23 21 22 nffv _jjA,kCXz
24 23 nfeq1 jjA,kCXz=0˙
25 relxp Relj×C
26 25 rgenw jARelj×C
27 reliun ReljAj×CjARelj×C
28 26 27 mpbir ReljAj×C
29 eldifi zjAj×CUzjAj×C
30 29 adantl φzjAj×CUzjAj×C
31 elrel ReljAj×CzjAj×Cjkz=jk
32 28 30 31 sylancr φzjAj×CUjkz=jk
33 nfv kφzjAj×CU
34 nfmpo2 _kjA,kCX
35 nfcv _kz
36 34 35 nffv _kjA,kCXz
37 36 nfeq1 kjA,kCXz=0˙
38 simprr φzjAj×CUz=jkz=jk
39 38 fveq2d φzjAj×CUz=jkjA,kCXz=jA,kCXjk
40 df-ov jjA,kCXk=jA,kCXjk
41 simprl φzjAj×CUz=jkzjAj×CU
42 38 41 eqeltrrd φzjAj×CUz=jkjkjAj×CU
43 42 eldifad φzjAj×CUz=jkjkjAj×C
44 opeliunxp jkjAj×CjAkC
45 43 44 sylib φzjAj×CUz=jkjAkC
46 45 simpld φzjAj×CUz=jkjA
47 45 simprd φzjAj×CUz=jkkC
48 45 6 syldan φzjAj×CUz=jkXB
49 9 ovmpt4g jAkCXBjjA,kCXk=X
50 46 47 48 49 syl3anc φzjAj×CUz=jkjjA,kCXk=X
51 40 50 eqtr3id φzjAj×CUz=jkjA,kCXjk=X
52 eldifn zjAj×CU¬zU
53 52 ad2antrl φzjAj×CUz=jk¬zU
54 38 eleq1d φzjAj×CUz=jkzUjkU
55 df-br jUkjkU
56 54 55 bitr4di φzjAj×CUz=jkzUjUk
57 53 56 mtbid φzjAj×CUz=jk¬jUk
58 45 57 jca φzjAj×CUz=jkjAkC¬jUk
59 58 8 syldan φzjAj×CUz=jkX=0˙
60 39 51 59 3eqtrd φzjAj×CUz=jkjA,kCXz=0˙
61 60 expr φzjAj×CUz=jkjA,kCXz=0˙
62 33 37 61 exlimd φzjAj×CUkz=jkjA,kCXz=0˙
63 20 24 32 62 exlimimdd φzjAj×CUjA,kCXz=0˙
64 14 63 suppss φjA,kCXsupp0˙U
65 7 64 ssfid φjA,kCXsupp0˙Fin
66 5 ralrimiva φjACW
67 9 mpoexxg AVjACWjA,kCXV
68 4 66 67 syl2anc φjA,kCXV
69 2 fvexi 0˙V
70 69 a1i φ0˙V
71 isfsupp jA,kCXV0˙VfinSupp0˙jA,kCXFunjA,kCXjA,kCXsupp0˙Fin
72 68 70 71 syl2anc φfinSupp0˙jA,kCXFunjA,kCXjA,kCXsupp0˙Fin
73 11 65 72 mpbir2and φfinSupp0˙jA,kCX