Metamath Proof Explorer


Theorem nfdif

Description: Bound-variable hypothesis builder for class difference. (Contributed by NM, 3-Dec-2003) (Revised by Mario Carneiro, 13-Oct-2016)

Ref Expression
Hypotheses nfdif.1 _xA
nfdif.2 _xB
Assertion nfdif _xAB

Proof

Step Hyp Ref Expression
1 nfdif.1 _xA
2 nfdif.2 _xB
3 dfdif2 AB=yA|¬yB
4 2 nfcri xyB
5 4 nfn x¬yB
6 5 1 nfrabw _xyA|¬yB
7 3 6 nfcxfr _xAB