| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumbagdiag.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 2 |
|
gsumbagdiag.s |
⊢ 𝑆 = { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } |
| 3 |
|
gsumbagdiag.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝐷 ) |
| 4 |
|
gsumbagdiag.b |
⊢ 𝐵 = ( Base ‘ 𝐺 ) |
| 5 |
|
gsumbagdiag.g |
⊢ ( 𝜑 → 𝐺 ∈ CMnd ) |
| 6 |
|
gsumbagdiag.x |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑋 ∈ 𝐵 ) |
| 7 |
|
psrass1lem.y |
⊢ ( 𝑘 = ( 𝑛 ∘f − 𝑗 ) → 𝑋 = 𝑌 ) |
| 8 |
1 2 3
|
gsumbagdiaglem |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) |
| 9 |
6
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑋 ∈ 𝐵 ) |
| 10 |
9
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 11 |
2
|
ssrab3 |
⊢ 𝑆 ⊆ 𝐷 |
| 12 |
1 2
|
psrbagconcl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝑆 ) |
| 13 |
3 12
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝑆 ) |
| 14 |
11 13
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 15 |
|
eqid |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } |
| 16 |
1 15
|
psrbagconf1o |
⊢ ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 17 |
14 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 18 |
|
f1of |
⊢ ( ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } –1-1-onto→ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 20 |
10 19
|
fcod |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 21 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐹 ∈ 𝐷 ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 ∈ 𝐷 ) |
| 23 |
1
|
psrbagf |
⊢ ( 𝐹 ∈ 𝐷 → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 24 |
22 23
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 : 𝐼 ⟶ ℕ0 ) |
| 25 |
24
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ) |
| 26 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 ∈ 𝑆 ) |
| 27 |
11 26
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 ∈ 𝐷 ) |
| 28 |
1
|
psrbagf |
⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 30 |
29
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 31 |
|
ssrab2 |
⊢ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⊆ 𝐷 |
| 32 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 33 |
31 32
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 ∈ 𝐷 ) |
| 34 |
1
|
psrbagf |
⊢ ( 𝑚 ∈ 𝐷 → 𝑚 : 𝐼 ⟶ ℕ0 ) |
| 35 |
33 34
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 : 𝐼 ⟶ ℕ0 ) |
| 36 |
35
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 ) |
| 37 |
|
nn0cn |
⊢ ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 → ( 𝐹 ‘ 𝑧 ) ∈ ℂ ) |
| 38 |
|
nn0cn |
⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) |
| 39 |
|
nn0cn |
⊢ ( ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑚 ‘ 𝑧 ) ∈ ℂ ) |
| 40 |
|
sub32 |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑚 ‘ 𝑧 ) ∈ ℂ ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) |
| 41 |
37 38 39 40
|
syl3an |
⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑚 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) |
| 42 |
25 30 36 41
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) = ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) |
| 43 |
42
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 44 |
35
|
ffnd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 Fn 𝐼 ) |
| 45 |
32 44
|
fndmexd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐼 ∈ V ) |
| 46 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) |
| 47 |
24
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝐹 = ( 𝑧 ∈ 𝐼 ↦ ( 𝐹 ‘ 𝑧 ) ) ) |
| 48 |
29
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 49 |
45 25 30 47 48
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝐹 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 50 |
35
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → 𝑚 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑚 ‘ 𝑧 ) ) ) |
| 51 |
45 46 36 49 50
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) − ( 𝑚 ‘ 𝑧 ) ) ) ) |
| 52 |
|
ovexd |
⊢ ( ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) ∈ V ) |
| 53 |
45 25 36 47 50
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( 𝐹 ∘f − 𝑚 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) ) ) |
| 54 |
45 52 30 53 48
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( ( 𝐹 ‘ 𝑧 ) − ( 𝑚 ‘ 𝑧 ) ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 55 |
43 51 54
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) |
| 56 |
1 15
|
psrbagconcl |
⊢ ( ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 57 |
14 56
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 58 |
55 57
|
eqeltrrd |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 59 |
55
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) = ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) ) |
| 60 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑋 |
| 61 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑛 / 𝑘 ⦌ 𝑋 |
| 62 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑛 → 𝑋 = ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) |
| 63 |
60 61 62
|
cbvmpt |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑛 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) |
| 64 |
63
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑛 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ 𝑛 / 𝑘 ⦌ 𝑋 ) ) |
| 65 |
|
csbeq1 |
⊢ ( 𝑛 = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) → ⦋ 𝑛 / 𝑘 ⦌ 𝑋 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 66 |
58 59 64 65
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) = ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 67 |
66
|
feq1d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ↔ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) ) |
| 68 |
20 67
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ⟶ 𝐵 ) |
| 69 |
68
|
fvmptelcdm |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 70 |
69
|
anasss |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 71 |
8 70
|
syldan |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 72 |
1 2 3 4 5 71
|
gsumbagdiag |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 73 |
|
eqid |
⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) |
| 74 |
1
|
psrbaglefi |
⊢ ( 𝐹 ∈ 𝐷 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 75 |
3 74
|
syl |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ Fin ) |
| 76 |
2 75
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ Fin ) |
| 77 |
1 2
|
psrbagconcl |
⊢ ( ( 𝐹 ∈ 𝐷 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝑆 ) |
| 78 |
3 77
|
sylan |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝑆 ) |
| 79 |
11 78
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐹 ∘f − 𝑚 ) ∈ 𝐷 ) |
| 80 |
1
|
psrbaglefi |
⊢ ( ( 𝐹 ∘f − 𝑚 ) ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ) |
| 81 |
79 80
|
syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ) |
| 82 |
|
xpfi |
⊢ ( ( 𝑆 ∈ Fin ∧ 𝑆 ∈ Fin ) → ( 𝑆 × 𝑆 ) ∈ Fin ) |
| 83 |
76 76 82
|
syl2anc |
⊢ ( 𝜑 → ( 𝑆 × 𝑆 ) ∈ Fin ) |
| 84 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑚 ∈ 𝑆 ) |
| 85 |
8
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑗 ∈ 𝑆 ) |
| 86 |
|
brxp |
⊢ ( 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ↔ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ 𝑆 ) ) |
| 87 |
84 85 86
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ) |
| 88 |
87
|
pm2.24d |
⊢ ( ( 𝜑 ∧ ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( ¬ 𝑚 ( 𝑆 × 𝑆 ) 𝑗 → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 89 |
88
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ∧ ¬ 𝑚 ( 𝑆 × 𝑆 ) 𝑗 ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 90 |
4 73 5 76 81 71 83 89
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 , 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 91 |
1
|
psrbaglefi |
⊢ ( ( 𝐹 ∘f − 𝑗 ) ∈ 𝐷 → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ) |
| 92 |
14 91
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ) |
| 93 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ∈ 𝑆 ) |
| 94 |
1 2 3
|
gsumbagdiaglem |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( 𝑚 ∈ 𝑆 ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) |
| 95 |
94
|
simpld |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑚 ∈ 𝑆 ) |
| 96 |
|
brxp |
⊢ ( 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ↔ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ 𝑆 ) ) |
| 97 |
93 95 96
|
sylanbrc |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ) |
| 98 |
97
|
pm2.24d |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑚 → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) ) |
| 99 |
98
|
impr |
⊢ ( ( 𝜑 ∧ ( ( 𝑗 ∈ 𝑆 ∧ 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ∧ ¬ 𝑗 ( 𝑆 × 𝑆 ) 𝑚 ) ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ( 0g ‘ 𝐺 ) ) |
| 100 |
4 73 5 76 92 70 83 99
|
gsum2d2 |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 , 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 101 |
72 90 100
|
3eqtr3d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 102 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
| 103 |
71
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) ∧ 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) → ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ∈ 𝐵 ) |
| 104 |
103
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) : { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ⟶ 𝐵 ) |
| 105 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 106 |
1 105
|
rabex2 |
⊢ 𝐷 ∈ V |
| 107 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → 𝐷 ∈ V ) |
| 108 |
|
rabexg |
⊢ ( 𝐷 ∈ V → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ V ) |
| 109 |
|
mptexg |
⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ V → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ) |
| 110 |
107 108 109
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ) |
| 111 |
|
funmpt |
⊢ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 112 |
111
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 113 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ V ) |
| 114 |
|
suppssdm |
⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 115 |
|
eqid |
⊢ ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) = ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 116 |
115
|
dmmptss |
⊢ dom ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } |
| 117 |
114 116
|
sstri |
⊢ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } |
| 118 |
117
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) |
| 119 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∈ V ∧ Fun ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ∈ Fin ∧ ( ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 120 |
110 112 113 81 118 119
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 121 |
4 73 102 81 104 120
|
gsumcl |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ∈ 𝐵 ) |
| 122 |
121
|
fmpttd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 123 |
1 2
|
psrbagconf1o |
⊢ ( 𝐹 ∈ 𝐷 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 124 |
3 123
|
syl |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 125 |
|
f1ocnv |
⊢ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 ) |
| 126 |
|
f1of |
⊢ ( ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 ⟶ 𝑆 ) |
| 127 |
124 125 126
|
3syl |
⊢ ( 𝜑 → ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 ⟶ 𝑆 ) |
| 128 |
122 127
|
fcod |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 129 |
|
coass |
⊢ ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) |
| 130 |
|
f1ococnv2 |
⊢ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) : 𝑆 –1-1-onto→ 𝑆 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( I ↾ 𝑆 ) ) |
| 131 |
124 130
|
syl |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( I ↾ 𝑆 ) ) |
| 132 |
131
|
coeq2d |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) ) |
| 133 |
129 132
|
eqtrid |
⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) ) |
| 134 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) = ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) |
| 135 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 136 |
|
breq2 |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑥 ∘r ≤ 𝑛 ↔ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) ) ) |
| 137 |
136
|
rabbidv |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } = { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ) |
| 138 |
|
ovex |
⊢ ( 𝑛 ∘f − 𝑗 ) ∈ V |
| 139 |
138 7
|
csbie |
⊢ ⦋ ( 𝑛 ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = 𝑌 |
| 140 |
|
oveq1 |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑛 ∘f − 𝑗 ) = ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) ) |
| 141 |
140
|
csbeq1d |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ⦋ ( 𝑛 ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 142 |
139 141
|
eqtr3id |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → 𝑌 = ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) |
| 143 |
137 142
|
mpteq12dv |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) = ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) |
| 144 |
143
|
oveq2d |
⊢ ( 𝑛 = ( 𝐹 ∘f − 𝑚 ) → ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) = ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 145 |
78 134 135 144
|
fmptco |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) |
| 146 |
145
|
coeq1d |
⊢ ( 𝜑 → ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) |
| 147 |
|
coires1 |
⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) |
| 148 |
|
ssid |
⊢ 𝑆 ⊆ 𝑆 |
| 149 |
|
resmpt |
⊢ ( 𝑆 ⊆ 𝑆 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 150 |
148 149
|
ax-mp |
⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ↾ 𝑆 ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 151 |
147 150
|
eqtri |
⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 152 |
151
|
a1i |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( I ↾ 𝑆 ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 153 |
133 146 152
|
3eqtr3d |
⊢ ( 𝜑 → ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 154 |
153
|
feq1d |
⊢ ( 𝜑 → ( ( ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ∘ ◡ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) : 𝑆 ⟶ 𝐵 ↔ ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) ) |
| 155 |
128 154
|
mpbid |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) : 𝑆 ⟶ 𝐵 ) |
| 156 |
|
rabexg |
⊢ ( 𝐷 ∈ V → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ V ) |
| 157 |
106 156
|
mp1i |
⊢ ( 𝜑 → { 𝑦 ∈ 𝐷 ∣ 𝑦 ∘r ≤ 𝐹 } ∈ V ) |
| 158 |
2 157
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 159 |
158
|
mptexd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∈ V ) |
| 160 |
|
funmpt |
⊢ Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 161 |
160
|
a1i |
⊢ ( 𝜑 → Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) |
| 162 |
|
fvexd |
⊢ ( 𝜑 → ( 0g ‘ 𝐺 ) ∈ V ) |
| 163 |
|
suppssdm |
⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 164 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) = ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) |
| 165 |
164
|
dmmptss |
⊢ dom ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ⊆ 𝑆 |
| 166 |
163 165
|
sstri |
⊢ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 |
| 167 |
166
|
a1i |
⊢ ( 𝜑 → ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 ) |
| 168 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∈ V ∧ Fun ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( 𝑆 ∈ Fin ∧ ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) supp ( 0g ‘ 𝐺 ) ) ⊆ 𝑆 ) ) → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 169 |
159 161 162 76 167 168
|
syl32anc |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) finSupp ( 0g ‘ 𝐺 ) ) |
| 170 |
4 73 5 76 155 169 124
|
gsumf1o |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) ) |
| 171 |
145
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ∘ ( 𝑚 ∈ 𝑆 ↦ ( 𝐹 ∘f − 𝑚 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 172 |
170 171
|
eqtrd |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑚 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 173 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐺 ∈ CMnd ) |
| 174 |
106
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → 𝐷 ∈ V ) |
| 175 |
|
rabexg |
⊢ ( 𝐷 ∈ V → { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V ) |
| 176 |
|
mptexg |
⊢ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ V → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ) |
| 177 |
174 175 176
|
3syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ) |
| 178 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) |
| 179 |
178
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) |
| 180 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 0g ‘ 𝐺 ) ∈ V ) |
| 181 |
|
suppssdm |
⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ dom ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) |
| 182 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) = ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) |
| 183 |
182
|
dmmptss |
⊢ dom ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } |
| 184 |
181 183
|
sstri |
⊢ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } |
| 185 |
184
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) |
| 186 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∧ ( 0g ‘ 𝐺 ) ∈ V ) ∧ ( { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) supp ( 0g ‘ 𝐺 ) ) ⊆ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ) ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 187 |
177 179 180 92 185 186
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) finSupp ( 0g ‘ 𝐺 ) ) |
| 188 |
4 73 173 92 10 187 17
|
gsumf1o |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) ) ) |
| 189 |
66
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ∘ ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ( ( 𝐹 ∘f − 𝑗 ) ∘f − 𝑚 ) ) ) ) = ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 190 |
188 189
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑆 ) → ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) = ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) |
| 191 |
190
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) = ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) |
| 192 |
191
|
oveq2d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑚 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ ⦋ ( ( 𝐹 ∘f − 𝑚 ) ∘f − 𝑗 ) / 𝑘 ⦌ 𝑋 ) ) ) ) ) |
| 193 |
101 172 192
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝐺 Σg ( 𝑛 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑗 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ 𝑛 } ↦ 𝑌 ) ) ) ) = ( 𝐺 Σg ( 𝑗 ∈ 𝑆 ↦ ( 𝐺 Σg ( 𝑘 ∈ { 𝑥 ∈ 𝐷 ∣ 𝑥 ∘r ≤ ( 𝐹 ∘f − 𝑗 ) } ↦ 𝑋 ) ) ) ) ) |