Metamath Proof Explorer


Theorem gsumf1o

Description: Re-index a finite group sum using a bijection. (Contributed by Mario Carneiro, 15-Dec-2014) (Revised by Mario Carneiro, 24-Apr-2016) (Revised by AV, 3-Jun-2019)

Ref Expression
Hypotheses gsumcl.b B=BaseG
gsumcl.z 0˙=0G
gsumcl.g φGCMnd
gsumcl.a φAV
gsumcl.f φF:AB
gsumcl.w φfinSupp0˙F
gsumf1o.h φH:C1-1 ontoA
Assertion gsumf1o φGF=GFH

Proof

Step Hyp Ref Expression
1 gsumcl.b B=BaseG
2 gsumcl.z 0˙=0G
3 gsumcl.g φGCMnd
4 gsumcl.a φAV
5 gsumcl.f φF:AB
6 gsumcl.w φfinSupp0˙F
7 gsumf1o.h φH:C1-1 ontoA
8 eqid CntzG=CntzG
9 cmnmnd GCMndGMnd
10 3 9 syl φGMnd
11 1 8 3 5 cntzcmnf φranFCntzGranF
12 1 2 8 10 4 5 11 6 7 gsumzf1o φGF=GFH