Metamath Proof Explorer


Theorem psrring

Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
Assertion psrring φ S Ring

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 eqidd φ Base S = Base S
5 eqidd φ + S = + S
6 eqidd φ S = S
7 ringgrp R Ring R Grp
8 3 7 syl φ R Grp
9 1 2 8 psrgrp φ S Grp
10 eqid Base S = Base S
11 eqid S = S
12 3 3ad2ant1 φ x Base S y Base S R Ring
13 simp2 φ x Base S y Base S x Base S
14 simp3 φ x Base S y Base S y Base S
15 1 10 11 12 13 14 psrmulcl φ x Base S y Base S x S y Base S
16 2 adantr φ x Base S y Base S z Base S I V
17 3 adantr φ x Base S y Base S z Base S R Ring
18 eqid f 0 I | f -1 Fin = f 0 I | f -1 Fin
19 simpr1 φ x Base S y Base S z Base S x Base S
20 simpr2 φ x Base S y Base S z Base S y Base S
21 simpr3 φ x Base S y Base S z Base S z Base S
22 1 16 17 18 11 10 19 20 21 psrass1 φ x Base S y Base S z Base S x S y S z = x S y S z
23 eqid + S = + S
24 1 16 17 18 11 10 19 20 21 23 psrdi φ x Base S y Base S z Base S x S y + S z = x S y + S x S z
25 1 16 17 18 11 10 19 20 21 23 psrdir φ x Base S y Base S z Base S x + S y S z = x S z + S y S z
26 eqid 0 R = 0 R
27 eqid 1 R = 1 R
28 eqid r f 0 I | f -1 Fin if r = I × 0 1 R 0 R = r f 0 I | f -1 Fin if r = I × 0 1 R 0 R
29 1 2 3 18 26 27 28 10 psr1cl φ r f 0 I | f -1 Fin if r = I × 0 1 R 0 R Base S
30 2 adantr φ x Base S I V
31 3 adantr φ x Base S R Ring
32 simpr φ x Base S x Base S
33 1 30 31 18 26 27 28 10 11 32 psrlidm φ x Base S r f 0 I | f -1 Fin if r = I × 0 1 R 0 R S x = x
34 1 30 31 18 26 27 28 10 11 32 psrridm φ x Base S x S r f 0 I | f -1 Fin if r = I × 0 1 R 0 R = x
35 4 5 6 9 15 22 24 25 29 33 34 isringd φ S Ring