Metamath Proof Explorer


Theorem psrring

Description: The ring of power series is a ring. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
Assertion psrring φSRing

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 eqidd φBaseS=BaseS
5 eqidd φ+S=+S
6 eqidd φS=S
7 ringgrp RRingRGrp
8 3 7 syl φRGrp
9 1 2 8 psrgrp φSGrp
10 eqid BaseS=BaseS
11 eqid S=S
12 3 3ad2ant1 φxBaseSyBaseSRRing
13 simp2 φxBaseSyBaseSxBaseS
14 simp3 φxBaseSyBaseSyBaseS
15 1 10 11 12 13 14 psrmulcl φxBaseSyBaseSxSyBaseS
16 2 adantr φxBaseSyBaseSzBaseSIV
17 3 adantr φxBaseSyBaseSzBaseSRRing
18 eqid f0I|f-1Fin=f0I|f-1Fin
19 simpr1 φxBaseSyBaseSzBaseSxBaseS
20 simpr2 φxBaseSyBaseSzBaseSyBaseS
21 simpr3 φxBaseSyBaseSzBaseSzBaseS
22 1 16 17 18 11 10 19 20 21 psrass1 φxBaseSyBaseSzBaseSxSySz=xSySz
23 eqid +S=+S
24 1 16 17 18 11 10 19 20 21 23 psrdi φxBaseSyBaseSzBaseSxSy+Sz=xSy+SxSz
25 1 16 17 18 11 10 19 20 21 23 psrdir φxBaseSyBaseSzBaseSx+SySz=xSz+SySz
26 eqid 0R=0R
27 eqid 1R=1R
28 eqid rf0I|f-1Finifr=I×01R0R=rf0I|f-1Finifr=I×01R0R
29 1 2 3 18 26 27 28 10 psr1cl φrf0I|f-1Finifr=I×01R0RBaseS
30 2 adantr φxBaseSIV
31 3 adantr φxBaseSRRing
32 simpr φxBaseSxBaseS
33 1 30 31 18 26 27 28 10 11 32 psrlidm φxBaseSrf0I|f-1Finifr=I×01R0RSx=x
34 1 30 31 18 26 27 28 10 11 32 psrridm φxBaseSxSrf0I|f-1Finifr=I×01R0R=x
35 4 5 6 9 15 22 24 25 29 33 34 isringd φSRing