| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrring.s |
|
| 2 |
|
psrring.i |
|
| 3 |
|
psrring.r |
|
| 4 |
|
psr1cl.d |
|
| 5 |
|
psr1cl.z |
|
| 6 |
|
psr1cl.o |
|
| 7 |
|
psr1cl.u |
|
| 8 |
|
psr1cl.b |
|
| 9 |
|
psrlidm.t |
|
| 10 |
|
psrlidm.x |
|
| 11 |
|
eqid |
|
| 12 |
1 2 3 4 5 6 7 8
|
psr1cl |
|
| 13 |
1 8 9 3 12 10
|
psrmulcl |
|
| 14 |
1 11 4 8 13
|
psrelbas |
|
| 15 |
14
|
ffnd |
|
| 16 |
1 11 4 8 10
|
psrelbas |
|
| 17 |
16
|
ffnd |
|
| 18 |
|
eqid |
|
| 19 |
12
|
adantr |
|
| 20 |
10
|
adantr |
|
| 21 |
|
simpr |
|
| 22 |
1 8 18 9 4 19 20 21
|
psrmulval |
|
| 23 |
|
breq1 |
|
| 24 |
|
fconstmpt |
|
| 25 |
4
|
fczpsrbag |
|
| 26 |
2 25
|
syl |
|
| 27 |
24 26
|
eqeltrid |
|
| 28 |
27
|
adantr |
|
| 29 |
4
|
psrbagf |
|
| 30 |
29
|
adantl |
|
| 31 |
30
|
ffvelcdmda |
|
| 32 |
31
|
nn0ge0d |
|
| 33 |
32
|
ralrimiva |
|
| 34 |
|
0nn0 |
|
| 35 |
34
|
fconst6 |
|
| 36 |
|
ffn |
|
| 37 |
35 36
|
mp1i |
|
| 38 |
30
|
ffnd |
|
| 39 |
2
|
adantr |
|
| 40 |
|
inidm |
|
| 41 |
34
|
a1i |
|
| 42 |
|
fvconst2g |
|
| 43 |
41 42
|
sylan |
|
| 44 |
|
eqidd |
|
| 45 |
37 38 39 39 40 43 44
|
ofrfval |
|
| 46 |
33 45
|
mpbird |
|
| 47 |
23 28 46
|
elrabd |
|
| 48 |
47
|
snssd |
|
| 49 |
48
|
resmptd |
|
| 50 |
49
|
oveq2d |
|
| 51 |
|
ringcmn |
|
| 52 |
3 51
|
syl |
|
| 53 |
52
|
adantr |
|
| 54 |
|
ovex |
|
| 55 |
4 54
|
rab2ex |
|
| 56 |
55
|
a1i |
|
| 57 |
3
|
ad2antrr |
|
| 58 |
|
simpr |
|
| 59 |
|
breq1 |
|
| 60 |
59
|
elrab |
|
| 61 |
58 60
|
sylib |
|
| 62 |
61
|
simpld |
|
| 63 |
1 11 4 8 19
|
psrelbas |
|
| 64 |
63
|
ffvelcdmda |
|
| 65 |
62 64
|
syldan |
|
| 66 |
16
|
ad2antrr |
|
| 67 |
21
|
adantr |
|
| 68 |
4
|
psrbagf |
|
| 69 |
62 68
|
syl |
|
| 70 |
61
|
simprd |
|
| 71 |
4
|
psrbagcon |
|
| 72 |
67 69 70 71
|
syl3anc |
|
| 73 |
72
|
simpld |
|
| 74 |
66 73
|
ffvelcdmd |
|
| 75 |
11 18
|
ringcl |
|
| 76 |
57 65 74 75
|
syl3anc |
|
| 77 |
76
|
fmpttd |
|
| 78 |
|
eldifi |
|
| 79 |
78 61
|
sylan2 |
|
| 80 |
79
|
simpld |
|
| 81 |
|
eqeq1 |
|
| 82 |
81
|
ifbid |
|
| 83 |
6
|
fvexi |
|
| 84 |
5
|
fvexi |
|
| 85 |
83 84
|
ifex |
|
| 86 |
82 7 85
|
fvmpt |
|
| 87 |
80 86
|
syl |
|
| 88 |
|
eldifn |
|
| 89 |
88
|
adantl |
|
| 90 |
|
velsn |
|
| 91 |
89 90
|
sylnib |
|
| 92 |
91
|
iffalsed |
|
| 93 |
87 92
|
eqtrd |
|
| 94 |
93
|
oveq1d |
|
| 95 |
3
|
ad2antrr |
|
| 96 |
78 74
|
sylan2 |
|
| 97 |
11 18 5
|
ringlz |
|
| 98 |
95 96 97
|
syl2anc |
|
| 99 |
94 98
|
eqtrd |
|
| 100 |
99 56
|
suppss2 |
|
| 101 |
4 54
|
rabex2 |
|
| 102 |
101
|
mptrabex |
|
| 103 |
102
|
a1i |
|
| 104 |
|
funmpt |
|
| 105 |
104
|
a1i |
|
| 106 |
84
|
a1i |
|
| 107 |
|
snfi |
|
| 108 |
107
|
a1i |
|
| 109 |
|
suppssfifsupp |
|
| 110 |
103 105 106 108 100 109
|
syl32anc |
|
| 111 |
11 5 53 56 77 100 110
|
gsumres |
|
| 112 |
3
|
adantr |
|
| 113 |
|
ringmnd |
|
| 114 |
112 113
|
syl |
|
| 115 |
|
iftrue |
|
| 116 |
115 7 83
|
fvmpt |
|
| 117 |
28 116
|
syl |
|
| 118 |
|
nn0cn |
|
| 119 |
118
|
subid1d |
|
| 120 |
119
|
adantl |
|
| 121 |
39 30 41 120
|
caofid0r |
|
| 122 |
121
|
fveq2d |
|
| 123 |
117 122
|
oveq12d |
|
| 124 |
16
|
ffvelcdmda |
|
| 125 |
11 18 6
|
ringlidm |
|
| 126 |
112 124 125
|
syl2anc |
|
| 127 |
123 126
|
eqtrd |
|
| 128 |
127 124
|
eqeltrd |
|
| 129 |
|
fveq2 |
|
| 130 |
|
oveq2 |
|
| 131 |
130
|
fveq2d |
|
| 132 |
129 131
|
oveq12d |
|
| 133 |
11 132
|
gsumsn |
|
| 134 |
114 28 128 133
|
syl3anc |
|
| 135 |
50 111 134
|
3eqtr3d |
|
| 136 |
22 135 127
|
3eqtrd |
|
| 137 |
15 17 136
|
eqfnfvd |
|