Metamath Proof Explorer


Theorem psrridm

Description: The identity element of the ring of power series is a right identity. (Contributed by Mario Carneiro, 29-Dec-2014) (Proof shortened by AV, 8-Jul-2019)

Ref Expression
Hypotheses psrring.s S=ImPwSerR
psrring.i φIV
psrring.r φRRing
psr1cl.d D=f0I|f-1Fin
psr1cl.z 0˙=0R
psr1cl.o 1˙=1R
psr1cl.u U=xDifx=I×01˙0˙
psr1cl.b B=BaseS
psrlidm.t ·˙=S
psrlidm.x φXB
Assertion psrridm φX·˙U=X

Proof

Step Hyp Ref Expression
1 psrring.s S=ImPwSerR
2 psrring.i φIV
3 psrring.r φRRing
4 psr1cl.d D=f0I|f-1Fin
5 psr1cl.z 0˙=0R
6 psr1cl.o 1˙=1R
7 psr1cl.u U=xDifx=I×01˙0˙
8 psr1cl.b B=BaseS
9 psrlidm.t ·˙=S
10 psrlidm.x φXB
11 eqid BaseR=BaseR
12 1 2 3 4 5 6 7 8 psr1cl φUB
13 1 8 9 3 10 12 psrmulcl φX·˙UB
14 1 11 4 8 13 psrelbas φX·˙U:DBaseR
15 14 ffnd φX·˙UFnD
16 1 11 4 8 10 psrelbas φX:DBaseR
17 16 ffnd φXFnD
18 eqid R=R
19 10 adantr φyDXB
20 12 adantr φyDUB
21 simpr φyDyD
22 1 8 18 9 4 19 20 21 psrmulval φyDX·˙Uy=RzgD|gfyXzRUyfz
23 breq1 g=ygfyyfy
24 2 adantr φyDIV
25 4 psrbagf yDy:I0
26 25 adantl φyDy:I0
27 nn0re z0z
28 27 leidd z0zz
29 28 adantl φyDz0zz
30 24 26 29 caofref φyDyfy
31 23 21 30 elrabd φyDygD|gfy
32 31 snssd φyDygD|gfy
33 32 resmptd φyDzgD|gfyXzRUyfzy=zyXzRUyfz
34 33 oveq2d φyDRzgD|gfyXzRUyfzy=RzyXzRUyfz
35 ringcmn RRingRCMnd
36 3 35 syl φRCMnd
37 36 adantr φyDRCMnd
38 ovex 0IV
39 4 38 rab2ex gD|gfyV
40 39 a1i φyDgD|gfyV
41 3 ad2antrr φyDzgD|gfyRRing
42 16 ad2antrr φyDzgD|gfyX:DBaseR
43 simpr φyDzgD|gfyzgD|gfy
44 breq1 g=zgfyzfy
45 44 elrab zgD|gfyzDzfy
46 43 45 sylib φyDzgD|gfyzDzfy
47 46 simpld φyDzgD|gfyzD
48 42 47 ffvelcdmd φyDzgD|gfyXzBaseR
49 1 11 4 8 20 psrelbas φyDU:DBaseR
50 49 adantr φyDzgD|gfyU:DBaseR
51 21 adantr φyDzgD|gfyyD
52 4 psrbagf zDz:I0
53 47 52 syl φyDzgD|gfyz:I0
54 46 simprd φyDzgD|gfyzfy
55 4 psrbagcon yDz:I0zfyyfzDyfzfy
56 51 53 54 55 syl3anc φyDzgD|gfyyfzDyfzfy
57 56 simpld φyDzgD|gfyyfzD
58 50 57 ffvelcdmd φyDzgD|gfyUyfzBaseR
59 11 18 ringcl RRingXzBaseRUyfzBaseRXzRUyfzBaseR
60 41 48 58 59 syl3anc φyDzgD|gfyXzRUyfzBaseR
61 60 fmpttd φyDzgD|gfyXzRUyfz:gD|gfyBaseR
62 eldifi zgD|gfyyzgD|gfy
63 62 57 sylan2 φyDzgD|gfyyyfzD
64 eqeq1 x=yfzx=I×0yfz=I×0
65 64 ifbid x=yfzifx=I×01˙0˙=ifyfz=I×01˙0˙
66 6 fvexi 1˙V
67 5 fvexi 0˙V
68 66 67 ifex ifyfz=I×01˙0˙V
69 65 7 68 fvmpt yfzDUyfz=ifyfz=I×01˙0˙
70 63 69 syl φyDzgD|gfyyUyfz=ifyfz=I×01˙0˙
71 eldifsni zgD|gfyyzy
72 71 adantl φyDzgD|gfyyzy
73 72 necomd φyDzgD|gfyyyz
74 24 adantr φyDzgD|gfyIV
75 nn0sscn 0
76 fss y:I00y:I
77 26 75 76 sylancl φyDy:I
78 77 adantr φyDzgD|gfyy:I
79 fss z:I00z:I
80 53 75 79 sylancl φyDzgD|gfyz:I
81 ofsubeq0 IVy:Iz:Iyfz=I×0y=z
82 74 78 80 81 syl3anc φyDzgD|gfyyfz=I×0y=z
83 62 82 sylan2 φyDzgD|gfyyyfz=I×0y=z
84 83 necon3bbid φyDzgD|gfyy¬yfz=I×0yz
85 73 84 mpbird φyDzgD|gfyy¬yfz=I×0
86 85 iffalsed φyDzgD|gfyyifyfz=I×01˙0˙=0˙
87 70 86 eqtrd φyDzgD|gfyyUyfz=0˙
88 87 oveq2d φyDzgD|gfyyXzRUyfz=XzR0˙
89 11 18 5 ringrz RRingXzBaseRXzR0˙=0˙
90 41 48 89 syl2anc φyDzgD|gfyXzR0˙=0˙
91 62 90 sylan2 φyDzgD|gfyyXzR0˙=0˙
92 88 91 eqtrd φyDzgD|gfyyXzRUyfz=0˙
93 92 40 suppss2 φyDzgD|gfyXzRUyfzsupp0˙y
94 40 mptexd φyDzgD|gfyXzRUyfzV
95 funmpt FunzgD|gfyXzRUyfz
96 95 a1i φyDFunzgD|gfyXzRUyfz
97 67 a1i φyD0˙V
98 snfi yFin
99 98 a1i φyDyFin
100 suppssfifsupp zgD|gfyXzRUyfzVFunzgD|gfyXzRUyfz0˙VyFinzgD|gfyXzRUyfzsupp0˙yfinSupp0˙zgD|gfyXzRUyfz
101 94 96 97 99 93 100 syl32anc φyDfinSupp0˙zgD|gfyXzRUyfz
102 11 5 37 40 61 93 101 gsumres φyDRzgD|gfyXzRUyfzy=RzgD|gfyXzRUyfz
103 3 adantr φyDRRing
104 ringmnd RRingRMnd
105 103 104 syl φyDRMnd
106 eqid y=y
107 ofsubeq0 IVy:Iy:Iyfy=I×0y=y
108 24 77 77 107 syl3anc φyDyfy=I×0y=y
109 106 108 mpbiri φyDyfy=I×0
110 109 fveq2d φyDUyfy=UI×0
111 fconstmpt I×0=wI0
112 4 fczpsrbag IVwI0D
113 2 112 syl φwI0D
114 111 113 eqeltrid φI×0D
115 114 adantr φyDI×0D
116 iftrue x=I×0ifx=I×01˙0˙=1˙
117 116 7 66 fvmpt I×0DUI×0=1˙
118 115 117 syl φyDUI×0=1˙
119 110 118 eqtrd φyDUyfy=1˙
120 119 oveq2d φyDXyRUyfy=XyR1˙
121 16 ffvelcdmda φyDXyBaseR
122 11 18 6 ringridm RRingXyBaseRXyR1˙=Xy
123 103 121 122 syl2anc φyDXyR1˙=Xy
124 120 123 eqtrd φyDXyRUyfy=Xy
125 124 121 eqeltrd φyDXyRUyfyBaseR
126 fveq2 z=yXz=Xy
127 oveq2 z=yyfz=yfy
128 127 fveq2d z=yUyfz=Uyfy
129 126 128 oveq12d z=yXzRUyfz=XyRUyfy
130 11 129 gsumsn RMndyDXyRUyfyBaseRRzyXzRUyfz=XyRUyfy
131 105 21 125 130 syl3anc φyDRzyXzRUyfz=XyRUyfy
132 34 102 131 3eqtr3d φyDRzgD|gfyXzRUyfz=XyRUyfy
133 22 132 124 3eqtrd φyDX·˙Uy=Xy
134 15 17 133 eqfnfvd φX·˙U=X