| Step | Hyp | Ref | Expression | 
						
							| 1 |  | psrring.s | ⊢ 𝑆  =  ( 𝐼  mPwSer  𝑅 ) | 
						
							| 2 |  | psrring.i | ⊢ ( 𝜑  →  𝐼  ∈  𝑉 ) | 
						
							| 3 |  | psrring.r | ⊢ ( 𝜑  →  𝑅  ∈  Ring ) | 
						
							| 4 |  | psr1cl.d | ⊢ 𝐷  =  { 𝑓  ∈  ( ℕ0  ↑m  𝐼 )  ∣  ( ◡ 𝑓  “  ℕ )  ∈  Fin } | 
						
							| 5 |  | psr1cl.z | ⊢  0   =  ( 0g ‘ 𝑅 ) | 
						
							| 6 |  | psr1cl.o | ⊢  1   =  ( 1r ‘ 𝑅 ) | 
						
							| 7 |  | psr1cl.u | ⊢ 𝑈  =  ( 𝑥  ∈  𝐷  ↦  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 8 |  | psr1cl.b | ⊢ 𝐵  =  ( Base ‘ 𝑆 ) | 
						
							| 9 |  | psrlidm.t | ⊢  ·   =  ( .r ‘ 𝑆 ) | 
						
							| 10 |  | psrlidm.x | ⊢ ( 𝜑  →  𝑋  ∈  𝐵 ) | 
						
							| 11 |  | eqid | ⊢ ( Base ‘ 𝑅 )  =  ( Base ‘ 𝑅 ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 | psr1cl | ⊢ ( 𝜑  →  𝑈  ∈  𝐵 ) | 
						
							| 13 | 1 8 9 3 10 12 | psrmulcl | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑈 )  ∈  𝐵 ) | 
						
							| 14 | 1 11 4 8 13 | psrelbas | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑈 ) : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 15 | 14 | ffnd | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑈 )  Fn  𝐷 ) | 
						
							| 16 | 1 11 4 8 10 | psrelbas | ⊢ ( 𝜑  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 17 | 16 | ffnd | ⊢ ( 𝜑  →  𝑋  Fn  𝐷 ) | 
						
							| 18 |  | eqid | ⊢ ( .r ‘ 𝑅 )  =  ( .r ‘ 𝑅 ) | 
						
							| 19 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑋  ∈  𝐵 ) | 
						
							| 20 | 12 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑈  ∈  𝐵 ) | 
						
							| 21 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  𝐷 ) | 
						
							| 22 | 1 8 18 9 4 19 20 21 | psrmulval | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋  ·  𝑈 ) ‘ 𝑦 )  =  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) ) ) | 
						
							| 23 |  | breq1 | ⊢ ( 𝑔  =  𝑦  →  ( 𝑔  ∘r   ≤  𝑦  ↔  𝑦  ∘r   ≤  𝑦 ) ) | 
						
							| 24 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝐼  ∈  𝑉 ) | 
						
							| 25 | 4 | psrbagf | ⊢ ( 𝑦  ∈  𝐷  →  𝑦 : 𝐼 ⟶ ℕ0 ) | 
						
							| 26 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑦 : 𝐼 ⟶ ℕ0 ) | 
						
							| 27 |  | nn0re | ⊢ ( 𝑧  ∈  ℕ0  →  𝑧  ∈  ℝ ) | 
						
							| 28 | 27 | leidd | ⊢ ( 𝑧  ∈  ℕ0  →  𝑧  ≤  𝑧 ) | 
						
							| 29 | 28 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ℕ0 )  →  𝑧  ≤  𝑧 ) | 
						
							| 30 | 24 26 29 | caofref | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∘r   ≤  𝑦 ) | 
						
							| 31 | 23 21 30 | elrabd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑦  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } ) | 
						
							| 32 | 31 | snssd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  { 𝑦 }  ⊆  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } ) | 
						
							| 33 | 32 | resmptd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ↾  { 𝑦 } )  =  ( 𝑧  ∈  { 𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) ) | 
						
							| 34 | 33 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑅  Σg  ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ↾  { 𝑦 } ) )  =  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) ) ) | 
						
							| 35 |  | ringcmn | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  CMnd ) | 
						
							| 36 | 3 35 | syl | ⊢ ( 𝜑  →  𝑅  ∈  CMnd ) | 
						
							| 37 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑅  ∈  CMnd ) | 
						
							| 38 |  | ovex | ⊢ ( ℕ0  ↑m  𝐼 )  ∈  V | 
						
							| 39 | 4 38 | rab2ex | ⊢ { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∈  V | 
						
							| 40 | 39 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∈  V ) | 
						
							| 41 | 3 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑅  ∈  Ring ) | 
						
							| 42 | 16 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 43 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } ) | 
						
							| 44 |  | breq1 | ⊢ ( 𝑔  =  𝑧  →  ( 𝑔  ∘r   ≤  𝑦  ↔  𝑧  ∘r   ≤  𝑦 ) ) | 
						
							| 45 | 44 | elrab | ⊢ ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↔  ( 𝑧  ∈  𝐷  ∧  𝑧  ∘r   ≤  𝑦 ) ) | 
						
							| 46 | 43 45 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( 𝑧  ∈  𝐷  ∧  𝑧  ∘r   ≤  𝑦 ) ) | 
						
							| 47 | 46 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑧  ∈  𝐷 ) | 
						
							| 48 | 42 47 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 49 | 1 11 4 8 20 | psrelbas | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 50 | 49 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑈 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 51 | 21 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑦  ∈  𝐷 ) | 
						
							| 52 | 4 | psrbagf | ⊢ ( 𝑧  ∈  𝐷  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 53 | 47 52 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑧 : 𝐼 ⟶ ℕ0 ) | 
						
							| 54 | 46 | simprd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑧  ∘r   ≤  𝑦 ) | 
						
							| 55 | 4 | psrbagcon | ⊢ ( ( 𝑦  ∈  𝐷  ∧  𝑧 : 𝐼 ⟶ ℕ0  ∧  𝑧  ∘r   ≤  𝑦 )  →  ( ( 𝑦  ∘f   −  𝑧 )  ∈  𝐷  ∧  ( 𝑦  ∘f   −  𝑧 )  ∘r   ≤  𝑦 ) ) | 
						
							| 56 | 51 53 54 55 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( ( 𝑦  ∘f   −  𝑧 )  ∈  𝐷  ∧  ( 𝑦  ∘f   −  𝑧 )  ∘r   ≤  𝑦 ) ) | 
						
							| 57 | 56 | simpld | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( 𝑦  ∘f   −  𝑧 )  ∈  𝐷 ) | 
						
							| 58 | 50 57 | ffvelcdmd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 59 | 11 18 | ringcl | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 )  ∧  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 60 | 41 48 58 59 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 61 | 60 | fmpttd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) : { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } ⟶ ( Base ‘ 𝑅 ) ) | 
						
							| 62 |  | eldifi | ⊢ ( 𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } )  →  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } ) | 
						
							| 63 | 62 57 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( 𝑦  ∘f   −  𝑧 )  ∈  𝐷 ) | 
						
							| 64 |  | eqeq1 | ⊢ ( 𝑥  =  ( 𝑦  ∘f   −  𝑧 )  →  ( 𝑥  =  ( 𝐼  ×  { 0 } )  ↔  ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ) ) | 
						
							| 65 | 64 | ifbid | ⊢ ( 𝑥  =  ( 𝑦  ∘f   −  𝑧 )  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  =  if ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 66 | 6 | fvexi | ⊢  1   ∈  V | 
						
							| 67 | 5 | fvexi | ⊢  0   ∈  V | 
						
							| 68 | 66 67 | ifex | ⊢ if ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  ∈  V | 
						
							| 69 | 65 7 68 | fvmpt | ⊢ ( ( 𝑦  ∘f   −  𝑧 )  ∈  𝐷  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  =  if ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 70 | 63 69 | syl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  =  if ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  ) ) | 
						
							| 71 |  | eldifsni | ⊢ ( 𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } )  →  𝑧  ≠  𝑦 ) | 
						
							| 72 | 71 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  𝑧  ≠  𝑦 ) | 
						
							| 73 | 72 | necomd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  𝑦  ≠  𝑧 ) | 
						
							| 74 | 24 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝐼  ∈  𝑉 ) | 
						
							| 75 |  | nn0sscn | ⊢ ℕ0  ⊆  ℂ | 
						
							| 76 |  | fss | ⊢ ( ( 𝑦 : 𝐼 ⟶ ℕ0  ∧  ℕ0  ⊆  ℂ )  →  𝑦 : 𝐼 ⟶ ℂ ) | 
						
							| 77 | 26 75 76 | sylancl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑦 : 𝐼 ⟶ ℂ ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑦 : 𝐼 ⟶ ℂ ) | 
						
							| 79 |  | fss | ⊢ ( ( 𝑧 : 𝐼 ⟶ ℕ0  ∧  ℕ0  ⊆  ℂ )  →  𝑧 : 𝐼 ⟶ ℂ ) | 
						
							| 80 | 53 75 79 | sylancl | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  𝑧 : 𝐼 ⟶ ℂ ) | 
						
							| 81 |  | ofsubeq0 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑦 : 𝐼 ⟶ ℂ  ∧  𝑧 : 𝐼 ⟶ ℂ )  →  ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 82 | 74 78 80 81 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 83 | 62 82 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  𝑧 ) ) | 
						
							| 84 | 83 | necon3bbid | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( ¬  ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  ≠  𝑧 ) ) | 
						
							| 85 | 73 84 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ¬  ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ) | 
						
							| 86 | 85 | iffalsed | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  if ( ( 𝑦  ∘f   −  𝑧 )  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  =   0  ) | 
						
							| 87 | 70 86 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  =   0  ) | 
						
							| 88 | 87 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) )  =  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  ) ) | 
						
							| 89 | 11 18 5 | ringrz | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑧 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 90 | 41 48 89 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 } )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 91 | 62 90 | sylan2 | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 )  0  )  =   0  ) | 
						
							| 92 | 88 91 | eqtrd | ⊢ ( ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  ∧  𝑧  ∈  ( { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ∖  { 𝑦 } ) )  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) )  =   0  ) | 
						
							| 93 | 92 40 | suppss2 | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  supp   0  )  ⊆  { 𝑦 } ) | 
						
							| 94 | 40 | mptexd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ∈  V ) | 
						
							| 95 |  | funmpt | ⊢ Fun  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) | 
						
							| 96 | 95 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  Fun  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) ) | 
						
							| 97 | 67 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →   0   ∈  V ) | 
						
							| 98 |  | snfi | ⊢ { 𝑦 }  ∈  Fin | 
						
							| 99 | 98 | a1i | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  { 𝑦 }  ∈  Fin ) | 
						
							| 100 |  | suppssfifsupp | ⊢ ( ( ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ∈  V  ∧  Fun  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ∧   0   ∈  V )  ∧  ( { 𝑦 }  ∈  Fin  ∧  ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  supp   0  )  ⊆  { 𝑦 } ) )  →  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  finSupp   0  ) | 
						
							| 101 | 94 96 97 99 93 100 | syl32anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  finSupp   0  ) | 
						
							| 102 | 11 5 37 40 61 93 101 | gsumres | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑅  Σg  ( ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) )  ↾  { 𝑦 } ) )  =  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) ) ) | 
						
							| 103 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑅  ∈  Ring ) | 
						
							| 104 |  | ringmnd | ⊢ ( 𝑅  ∈  Ring  →  𝑅  ∈  Mnd ) | 
						
							| 105 | 103 104 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  𝑅  ∈  Mnd ) | 
						
							| 106 |  | eqid | ⊢ 𝑦  =  𝑦 | 
						
							| 107 |  | ofsubeq0 | ⊢ ( ( 𝐼  ∈  𝑉  ∧  𝑦 : 𝐼 ⟶ ℂ  ∧  𝑦 : 𝐼 ⟶ ℂ )  →  ( ( 𝑦  ∘f   −  𝑦 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  𝑦 ) ) | 
						
							| 108 | 24 77 77 107 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑦  ∘f   −  𝑦 )  =  ( 𝐼  ×  { 0 } )  ↔  𝑦  =  𝑦 ) ) | 
						
							| 109 | 106 108 | mpbiri | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑦  ∘f   −  𝑦 )  =  ( 𝐼  ×  { 0 } ) ) | 
						
							| 110 | 109 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) )  =  ( 𝑈 ‘ ( 𝐼  ×  { 0 } ) ) ) | 
						
							| 111 |  | fconstmpt | ⊢ ( 𝐼  ×  { 0 } )  =  ( 𝑤  ∈  𝐼  ↦  0 ) | 
						
							| 112 | 4 | fczpsrbag | ⊢ ( 𝐼  ∈  𝑉  →  ( 𝑤  ∈  𝐼  ↦  0 )  ∈  𝐷 ) | 
						
							| 113 | 2 112 | syl | ⊢ ( 𝜑  →  ( 𝑤  ∈  𝐼  ↦  0 )  ∈  𝐷 ) | 
						
							| 114 | 111 113 | eqeltrid | ⊢ ( 𝜑  →  ( 𝐼  ×  { 0 } )  ∈  𝐷 ) | 
						
							| 115 | 114 | adantr | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝐼  ×  { 0 } )  ∈  𝐷 ) | 
						
							| 116 |  | iftrue | ⊢ ( 𝑥  =  ( 𝐼  ×  { 0 } )  →  if ( 𝑥  =  ( 𝐼  ×  { 0 } ) ,   1  ,   0  )  =   1  ) | 
						
							| 117 | 116 7 66 | fvmpt | ⊢ ( ( 𝐼  ×  { 0 } )  ∈  𝐷  →  ( 𝑈 ‘ ( 𝐼  ×  { 0 } ) )  =   1  ) | 
						
							| 118 | 115 117 | syl | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑈 ‘ ( 𝐼  ×  { 0 } ) )  =   1  ) | 
						
							| 119 | 110 118 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) )  =   1  ) | 
						
							| 120 | 119 | oveq2d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) )  =  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 )  1  ) ) | 
						
							| 121 | 16 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑋 ‘ 𝑦 )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 122 | 11 18 6 | ringridm | ⊢ ( ( 𝑅  ∈  Ring  ∧  ( 𝑋 ‘ 𝑦 )  ∈  ( Base ‘ 𝑅 ) )  →  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 )  1  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 123 | 103 121 122 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 )  1  )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 124 | 120 123 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 125 | 124 121 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) )  ∈  ( Base ‘ 𝑅 ) ) | 
						
							| 126 |  | fveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑋 ‘ 𝑧 )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 127 |  | oveq2 | ⊢ ( 𝑧  =  𝑦  →  ( 𝑦  ∘f   −  𝑧 )  =  ( 𝑦  ∘f   −  𝑦 ) ) | 
						
							| 128 | 127 | fveq2d | ⊢ ( 𝑧  =  𝑦  →  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) )  =  ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) ) | 
						
							| 129 | 126 128 | oveq12d | ⊢ ( 𝑧  =  𝑦  →  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) )  =  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) ) ) | 
						
							| 130 | 11 129 | gsumsn | ⊢ ( ( 𝑅  ∈  Mnd  ∧  𝑦  ∈  𝐷  ∧  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) )  ∈  ( Base ‘ 𝑅 ) )  →  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) ) ) | 
						
							| 131 | 105 21 125 130 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) ) ) | 
						
							| 132 | 34 102 131 | 3eqtr3d | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( 𝑅  Σg  ( 𝑧  ∈  { 𝑔  ∈  𝐷  ∣  𝑔  ∘r   ≤  𝑦 }  ↦  ( ( 𝑋 ‘ 𝑧 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑧 ) ) ) ) )  =  ( ( 𝑋 ‘ 𝑦 ) ( .r ‘ 𝑅 ) ( 𝑈 ‘ ( 𝑦  ∘f   −  𝑦 ) ) ) ) | 
						
							| 133 | 22 132 124 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑦  ∈  𝐷 )  →  ( ( 𝑋  ·  𝑈 ) ‘ 𝑦 )  =  ( 𝑋 ‘ 𝑦 ) ) | 
						
							| 134 | 15 17 133 | eqfnfvd | ⊢ ( 𝜑  →  ( 𝑋  ·  𝑈 )  =  𝑋 ) |