Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caofref.1 | |
|
caofref.2 | |
||
caofref.3 | |
||
Assertion | caofref | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | |
|
2 | caofref.2 | |
|
3 | caofref.3 | |
|
4 | id | |
|
5 | 4 4 | breq12d | |
6 | 3 | ralrimiva | |
7 | 6 | adantr | |
8 | 2 | ffvelcdmda | |
9 | 5 7 8 | rspcdva | |
10 | 9 | ralrimiva | |
11 | 2 | ffnd | |
12 | inidm | |
|
13 | eqidd | |
|
14 | 11 11 1 1 12 13 13 | ofrfval | |
15 | 10 14 | mpbird | |