Metamath Proof Explorer


Theorem caofref

Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofref.3 φxSxRx
Assertion caofref φFRfF

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofref.3 φxSxRx
4 id x=Fwx=Fw
5 4 4 breq12d x=FwxRxFwRFw
6 3 ralrimiva φxSxRx
7 6 adantr φwAxSxRx
8 2 ffvelcdmda φwAFwS
9 5 7 8 rspcdva φwAFwRFw
10 9 ralrimiva φwAFwRFw
11 2 ffnd φFFnA
12 inidm AA=A
13 eqidd φwAFw=Fw
14 11 11 1 1 12 13 13 ofrfval φFRfFwAFwRFw
15 10 14 mpbird φFRfF