| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caofref.1 |
|- ( ph -> A e. V ) |
| 2 |
|
caofref.2 |
|- ( ph -> F : A --> S ) |
| 3 |
|
caofref.3 |
|- ( ( ph /\ x e. S ) -> x R x ) |
| 4 |
|
id |
|- ( x = ( F ` w ) -> x = ( F ` w ) ) |
| 5 |
4 4
|
breq12d |
|- ( x = ( F ` w ) -> ( x R x <-> ( F ` w ) R ( F ` w ) ) ) |
| 6 |
3
|
ralrimiva |
|- ( ph -> A. x e. S x R x ) |
| 7 |
6
|
adantr |
|- ( ( ph /\ w e. A ) -> A. x e. S x R x ) |
| 8 |
2
|
ffvelcdmda |
|- ( ( ph /\ w e. A ) -> ( F ` w ) e. S ) |
| 9 |
5 7 8
|
rspcdva |
|- ( ( ph /\ w e. A ) -> ( F ` w ) R ( F ` w ) ) |
| 10 |
9
|
ralrimiva |
|- ( ph -> A. w e. A ( F ` w ) R ( F ` w ) ) |
| 11 |
2
|
ffnd |
|- ( ph -> F Fn A ) |
| 12 |
|
inidm |
|- ( A i^i A ) = A |
| 13 |
|
eqidd |
|- ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) ) |
| 14 |
11 11 1 1 12 13 13
|
ofrfval |
|- ( ph -> ( F oR R F <-> A. w e. A ( F ` w ) R ( F ` w ) ) ) |
| 15 |
10 14
|
mpbird |
|- ( ph -> F oR R F ) |