Metamath Proof Explorer


Theorem caofref

Description: Transfer a reflexive law to the function relation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1
|- ( ph -> A e. V )
caofref.2
|- ( ph -> F : A --> S )
caofref.3
|- ( ( ph /\ x e. S ) -> x R x )
Assertion caofref
|- ( ph -> F oR R F )

Proof

Step Hyp Ref Expression
1 caofref.1
 |-  ( ph -> A e. V )
2 caofref.2
 |-  ( ph -> F : A --> S )
3 caofref.3
 |-  ( ( ph /\ x e. S ) -> x R x )
4 id
 |-  ( x = ( F ` w ) -> x = ( F ` w ) )
5 4 4 breq12d
 |-  ( x = ( F ` w ) -> ( x R x <-> ( F ` w ) R ( F ` w ) ) )
6 3 ralrimiva
 |-  ( ph -> A. x e. S x R x )
7 6 adantr
 |-  ( ( ph /\ w e. A ) -> A. x e. S x R x )
8 2 ffvelrnda
 |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S )
9 5 7 8 rspcdva
 |-  ( ( ph /\ w e. A ) -> ( F ` w ) R ( F ` w ) )
10 9 ralrimiva
 |-  ( ph -> A. w e. A ( F ` w ) R ( F ` w ) )
11 2 ffnd
 |-  ( ph -> F Fn A )
12 inidm
 |-  ( A i^i A ) = A
13 eqidd
 |-  ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) )
14 11 11 1 1 12 13 13 ofrfval
 |-  ( ph -> ( F oR R F <-> A. w e. A ( F ` w ) R ( F ` w ) ) )
15 10 14 mpbird
 |-  ( ph -> F oR R F )