Metamath Proof Explorer


Theorem caofinvl

Description: Transfer a left inverse law to the function operation. (Contributed by NM, 22-Oct-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofinv.3 φBW
caofinv.4 φN:SS
caofinv.5 φG=vANFv
caofinvl.6 φxSNxRx=B
Assertion caofinvl φGRfF=A×B

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofinv.3 φBW
4 caofinv.4 φN:SS
5 caofinv.5 φG=vANFv
6 caofinvl.6 φxSNxRx=B
7 4 adantr φvAN:SS
8 2 ffvelcdmda φvAFvS
9 7 8 ffvelcdmd φvANFvS
10 5 9 fmpt3d φG:AS
11 10 ffvelcdmda φwAGwS
12 2 ffvelcdmda φwAFwS
13 fvex NFvV
14 eqid vANFv=vANFv
15 13 14 fnmpti vANFvFnA
16 5 fneq1d φGFnAvANFvFnA
17 15 16 mpbiri φGFnA
18 dffn5 GFnAG=wAGw
19 17 18 sylib φG=wAGw
20 2 feqmptd φF=wAFw
21 1 11 12 19 20 offval2 φGRfF=wAGwRFw
22 5 fveq1d φGw=vANFvw
23 2fveq3 v=wNFv=NFw
24 fvex NFwV
25 23 14 24 fvmpt wAvANFvw=NFw
26 22 25 sylan9eq φwAGw=NFw
27 26 oveq1d φwAGwRFw=NFwRFw
28 fveq2 x=FwNx=NFw
29 id x=Fwx=Fw
30 28 29 oveq12d x=FwNxRx=NFwRFw
31 30 eqeq1d x=FwNxRx=BNFwRFw=B
32 6 ralrimiva φxSNxRx=B
33 32 adantr φwAxSNxRx=B
34 31 33 12 rspcdva φwANFwRFw=B
35 27 34 eqtrd φwAGwRFw=B
36 35 mpteq2dva φwAGwRFw=wAB
37 21 36 eqtrd φGRfF=wAB
38 fconstmpt A×B=wAB
39 37 38 eqtr4di φGRfF=A×B