Metamath Proof Explorer


Theorem caofid0l

Description: Transfer a left identity law to the function operation. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofid0.3 φ B W
caofid0l.5 φ x S B R x = x
Assertion caofid0l φ A × B R f F = F

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofid0.3 φ B W
4 caofid0l.5 φ x S B R x = x
5 fnconstg B W A × B Fn A
6 3 5 syl φ A × B Fn A
7 2 ffnd φ F Fn A
8 fvconst2g B W w A A × B w = B
9 3 8 sylan φ w A A × B w = B
10 eqidd φ w A F w = F w
11 4 ralrimiva φ x S B R x = x
12 2 ffvelrnda φ w A F w S
13 oveq2 x = F w B R x = B R F w
14 id x = F w x = F w
15 13 14 eqeq12d x = F w B R x = x B R F w = F w
16 15 rspccva x S B R x = x F w S B R F w = F w
17 11 12 16 syl2an2r φ w A B R F w = F w
18 1 6 7 7 9 10 17 offveq φ A × B R f F = F