Metamath Proof Explorer


Theorem caofid0r

Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofid0.3 φ B W
caofid0r.5 φ x S x R B = x
Assertion caofid0r φ F R f A × B = F

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofid0.3 φ B W
4 caofid0r.5 φ x S x R B = x
5 2 ffnd φ F Fn A
6 fnconstg B W A × B Fn A
7 3 6 syl φ A × B Fn A
8 eqidd φ w A F w = F w
9 fvconst2g B W w A A × B w = B
10 3 9 sylan φ w A A × B w = B
11 4 ralrimiva φ x S x R B = x
12 2 ffvelrnda φ w A F w S
13 oveq1 x = F w x R B = F w R B
14 id x = F w x = F w
15 13 14 eqeq12d x = F w x R B = x F w R B = F w
16 15 rspccva x S x R B = x F w S F w R B = F w
17 11 12 16 syl2an2r φ w A F w R B = F w
18 1 5 7 5 8 10 17 offveq φ F R f A × B = F