Metamath Proof Explorer


Theorem caofid0r

Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofid0.3 φBW
caofid0r.5 φxSxRB=x
Assertion caofid0r φFRfA×B=F

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofid0.3 φBW
4 caofid0r.5 φxSxRB=x
5 2 ffnd φFFnA
6 fnconstg BWA×BFnA
7 3 6 syl φA×BFnA
8 eqidd φwAFw=Fw
9 fvconst2g BWwAA×Bw=B
10 3 9 sylan φwAA×Bw=B
11 4 ralrimiva φxSxRB=x
12 2 ffvelcdmda φwAFwS
13 oveq1 x=FwxRB=FwRB
14 id x=Fwx=Fw
15 13 14 eqeq12d x=FwxRB=xFwRB=Fw
16 15 rspccva xSxRB=xFwSFwRB=Fw
17 11 12 16 syl2an2r φwAFwRB=Fw
18 1 5 7 5 8 10 17 offveq φFRfA×B=F