Metamath Proof Explorer


Theorem caofid1

Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofid0.3 φ B W
caofid1.4 φ C X
caofid1.5 φ x S x R B = C
Assertion caofid1 φ F R f A × B = A × C

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofid0.3 φ B W
4 caofid1.4 φ C X
5 caofid1.5 φ x S x R B = C
6 2 ffnd φ F Fn A
7 fnconstg B W A × B Fn A
8 3 7 syl φ A × B Fn A
9 fnconstg C X A × C Fn A
10 4 9 syl φ A × C Fn A
11 eqidd φ w A F w = F w
12 fvconst2g B W w A A × B w = B
13 3 12 sylan φ w A A × B w = B
14 5 ralrimiva φ x S x R B = C
15 2 ffvelrnda φ w A F w S
16 oveq1 x = F w x R B = F w R B
17 16 eqeq1d x = F w x R B = C F w R B = C
18 17 rspccva x S x R B = C F w S F w R B = C
19 14 15 18 syl2an2r φ w A F w R B = C
20 fvconst2g C X w A A × C w = C
21 4 20 sylan φ w A A × C w = C
22 19 21 eqtr4d φ w A F w R B = A × C w
23 1 6 8 10 11 13 22 offveq φ F R f A × B = A × C