Metamath Proof Explorer


Theorem caofid2

Description: Transfer a right absorption law to the function operation. (Contributed by Mario Carneiro, 28-Jul-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofid0.3 φ B W
caofid1.4 φ C X
caofid2.5 φ x S B R x = C
Assertion caofid2 φ A × B R f F = A × C

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofid0.3 φ B W
4 caofid1.4 φ C X
5 caofid2.5 φ x S B R x = C
6 fnconstg B W A × B Fn A
7 3 6 syl φ A × B Fn A
8 2 ffnd φ F Fn A
9 fnconstg C X A × C Fn A
10 4 9 syl φ A × C Fn A
11 fvconst2g B W w A A × B w = B
12 3 11 sylan φ w A A × B w = B
13 eqidd φ w A F w = F w
14 5 ralrimiva φ x S B R x = C
15 2 ffvelrnda φ w A F w S
16 oveq2 x = F w B R x = B R F w
17 16 eqeq1d x = F w B R x = C B R F w = C
18 17 rspccva x S B R x = C F w S B R F w = C
19 14 15 18 syl2an2r φ w A B R F w = C
20 fvconst2g C X w A A × C w = C
21 4 20 sylan φ w A A × C w = C
22 19 21 eqtr4d φ w A B R F w = A × C w
23 1 7 8 10 12 13 22 offveq φ A × B R f F = A × C