Metamath Proof Explorer


Theorem caofcom

Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofref.1 φAV
caofref.2 φF:AS
caofcom.3 φG:AS
caofcom.4 φxSySxRy=yRx
Assertion caofcom φFRfG=GRfF

Proof

Step Hyp Ref Expression
1 caofref.1 φAV
2 caofref.2 φF:AS
3 caofcom.3 φG:AS
4 caofcom.4 φxSySxRy=yRx
5 2 ffvelcdmda φwAFwS
6 3 ffvelcdmda φwAGwS
7 5 6 jca φwAFwSGwS
8 4 caovcomg φFwSGwSFwRGw=GwRFw
9 7 8 syldan φwAFwRGw=GwRFw
10 9 mpteq2dva φwAFwRGw=wAGwRFw
11 2 feqmptd φF=wAFw
12 3 feqmptd φG=wAGw
13 1 5 6 11 12 offval2 φFRfG=wAFwRGw
14 1 6 5 12 11 offval2 φGRfF=wAGwRFw
15 10 13 14 3eqtr4d φFRfG=GRfF