Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | caofref.1 | |
|
caofref.2 | |
||
caofcom.3 | |
||
caofcom.4 | |
||
Assertion | caofcom | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | caofref.1 | |
|
2 | caofref.2 | |
|
3 | caofcom.3 | |
|
4 | caofcom.4 | |
|
5 | 2 | ffvelcdmda | |
6 | 3 | ffvelcdmda | |
7 | 5 6 | jca | |
8 | 4 | caovcomg | |
9 | 7 8 | syldan | |
10 | 9 | mpteq2dva | |
11 | 2 | feqmptd | |
12 | 3 | feqmptd | |
13 | 1 5 6 11 12 | offval2 | |
14 | 1 6 5 12 11 | offval2 | |
15 | 10 13 14 | 3eqtr4d | |