Metamath Proof Explorer


Theorem caofcom

Description: Transfer a commutative law to the function operation. (Contributed by Mario Carneiro, 26-Jul-2014)

Ref Expression
Hypotheses caofref.1 φ A V
caofref.2 φ F : A S
caofcom.3 φ G : A S
caofcom.4 φ x S y S x R y = y R x
Assertion caofcom φ F R f G = G R f F

Proof

Step Hyp Ref Expression
1 caofref.1 φ A V
2 caofref.2 φ F : A S
3 caofcom.3 φ G : A S
4 caofcom.4 φ x S y S x R y = y R x
5 2 ffvelrnda φ w A F w S
6 3 ffvelrnda φ w A G w S
7 5 6 jca φ w A F w S G w S
8 4 caovcomg φ F w S G w S F w R G w = G w R F w
9 7 8 syldan φ w A F w R G w = G w R F w
10 9 mpteq2dva φ w A F w R G w = w A G w R F w
11 2 feqmptd φ F = w A F w
12 3 feqmptd φ G = w A G w
13 1 5 6 11 12 offval2 φ F R f G = w A F w R G w
14 1 6 5 12 11 offval2 φ G R f F = w A G w R F w
15 10 13 14 3eqtr4d φ F R f G = G R f F