Metamath Proof Explorer


Theorem caofid0r

Description: Transfer a right identity law to the function operation. (Contributed by NM, 21-Oct-2014)

Ref Expression
Hypotheses caofref.1
|- ( ph -> A e. V )
caofref.2
|- ( ph -> F : A --> S )
caofid0.3
|- ( ph -> B e. W )
caofid0r.5
|- ( ( ph /\ x e. S ) -> ( x R B ) = x )
Assertion caofid0r
|- ( ph -> ( F oF R ( A X. { B } ) ) = F )

Proof

Step Hyp Ref Expression
1 caofref.1
 |-  ( ph -> A e. V )
2 caofref.2
 |-  ( ph -> F : A --> S )
3 caofid0.3
 |-  ( ph -> B e. W )
4 caofid0r.5
 |-  ( ( ph /\ x e. S ) -> ( x R B ) = x )
5 2 ffnd
 |-  ( ph -> F Fn A )
6 fnconstg
 |-  ( B e. W -> ( A X. { B } ) Fn A )
7 3 6 syl
 |-  ( ph -> ( A X. { B } ) Fn A )
8 eqidd
 |-  ( ( ph /\ w e. A ) -> ( F ` w ) = ( F ` w ) )
9 fvconst2g
 |-  ( ( B e. W /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B )
10 3 9 sylan
 |-  ( ( ph /\ w e. A ) -> ( ( A X. { B } ) ` w ) = B )
11 4 ralrimiva
 |-  ( ph -> A. x e. S ( x R B ) = x )
12 2 ffvelrnda
 |-  ( ( ph /\ w e. A ) -> ( F ` w ) e. S )
13 oveq1
 |-  ( x = ( F ` w ) -> ( x R B ) = ( ( F ` w ) R B ) )
14 id
 |-  ( x = ( F ` w ) -> x = ( F ` w ) )
15 13 14 eqeq12d
 |-  ( x = ( F ` w ) -> ( ( x R B ) = x <-> ( ( F ` w ) R B ) = ( F ` w ) ) )
16 15 rspccva
 |-  ( ( A. x e. S ( x R B ) = x /\ ( F ` w ) e. S ) -> ( ( F ` w ) R B ) = ( F ` w ) )
17 11 12 16 syl2an2r
 |-  ( ( ph /\ w e. A ) -> ( ( F ` w ) R B ) = ( F ` w ) )
18 1 5 7 5 8 10 17 offveq
 |-  ( ph -> ( F oF R ( A X. { B } ) ) = F )