Metamath Proof Explorer


Theorem psrcom

Description: Commutative law for the ring of power series. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses psrring.s S = I mPwSer R
psrring.i φ I V
psrring.r φ R Ring
psrass.d D = f 0 I | f -1 Fin
psrass.t × ˙ = S
psrass.b B = Base S
psrass.x φ X B
psrass.y φ Y B
psrcom.c φ R CRing
Assertion psrcom φ X × ˙ Y = Y × ˙ X

Proof

Step Hyp Ref Expression
1 psrring.s S = I mPwSer R
2 psrring.i φ I V
3 psrring.r φ R Ring
4 psrass.d D = f 0 I | f -1 Fin
5 psrass.t × ˙ = S
6 psrass.b B = Base S
7 psrass.x φ X B
8 psrass.y φ Y B
9 psrcom.c φ R CRing
10 eqid Base R = Base R
11 eqid 0 R = 0 R
12 ringcmn R Ring R CMnd
13 3 12 syl φ R CMnd
14 13 adantr φ x D R CMnd
15 4 psrbaglefi I V x D g D | g f x Fin
16 2 15 sylan φ x D g D | g f x Fin
17 3 ad2antrr φ x D k g D | g f x R Ring
18 1 10 4 6 7 psrelbas φ X : D Base R
19 18 ad2antrr φ x D k g D | g f x X : D Base R
20 simpr φ x D k g D | g f x k g D | g f x
21 breq1 g = k g f x k f x
22 21 elrab k g D | g f x k D k f x
23 20 22 sylib φ x D k g D | g f x k D k f x
24 23 simpld φ x D k g D | g f x k D
25 19 24 ffvelrnd φ x D k g D | g f x X k Base R
26 1 10 4 6 8 psrelbas φ Y : D Base R
27 26 ad2antrr φ x D k g D | g f x Y : D Base R
28 2 ad2antrr φ x D k g D | g f x I V
29 simplr φ x D k g D | g f x x D
30 4 psrbagf I V k D k : I 0
31 28 24 30 syl2anc φ x D k g D | g f x k : I 0
32 23 simprd φ x D k g D | g f x k f x
33 4 psrbagcon I V x D k : I 0 k f x x f k D x f k f x
34 28 29 31 32 33 syl13anc φ x D k g D | g f x x f k D x f k f x
35 34 simpld φ x D k g D | g f x x f k D
36 27 35 ffvelrnd φ x D k g D | g f x Y x f k Base R
37 eqid R = R
38 10 37 ringcl R Ring X k Base R Y x f k Base R X k R Y x f k Base R
39 17 25 36 38 syl3anc φ x D k g D | g f x X k R Y x f k Base R
40 39 fmpttd φ x D k g D | g f x X k R Y x f k : g D | g f x Base R
41 ovex 0 I V
42 4 41 rabex2 D V
43 42 a1i φ x D D V
44 rabexg D V g D | g f x V
45 43 44 syl φ x D g D | g f x V
46 45 mptexd φ x D k g D | g f x X k R Y x f k V
47 funmpt Fun k g D | g f x X k R Y x f k
48 47 a1i φ x D Fun k g D | g f x X k R Y x f k
49 fvexd φ x D 0 R V
50 suppssdm k g D | g f x X k R Y x f k supp 0 R dom k g D | g f x X k R Y x f k
51 eqid k g D | g f x X k R Y x f k = k g D | g f x X k R Y x f k
52 51 dmmptss dom k g D | g f x X k R Y x f k g D | g f x
53 50 52 sstri k g D | g f x X k R Y x f k supp 0 R g D | g f x
54 53 a1i φ x D k g D | g f x X k R Y x f k supp 0 R g D | g f x
55 suppssfifsupp k g D | g f x X k R Y x f k V Fun k g D | g f x X k R Y x f k 0 R V g D | g f x Fin k g D | g f x X k R Y x f k supp 0 R g D | g f x finSupp 0 R k g D | g f x X k R Y x f k
56 46 48 49 16 54 55 syl32anc φ x D finSupp 0 R k g D | g f x X k R Y x f k
57 eqid g D | g f x = g D | g f x
58 4 57 psrbagconf1o I V x D j g D | g f x x f j : g D | g f x 1-1 onto g D | g f x
59 2 58 sylan φ x D j g D | g f x x f j : g D | g f x 1-1 onto g D | g f x
60 10 11 14 16 40 56 59 gsumf1o φ x D R k g D | g f x X k R Y x f k = R k g D | g f x X k R Y x f k j g D | g f x x f j
61 2 ad2antrr φ x D j g D | g f x I V
62 simplr φ x D j g D | g f x x D
63 simpr φ x D j g D | g f x j g D | g f x
64 4 57 psrbagconcl I V x D j g D | g f x x f j g D | g f x
65 61 62 63 64 syl3anc φ x D j g D | g f x x f j g D | g f x
66 eqidd φ x D j g D | g f x x f j = j g D | g f x x f j
67 eqidd φ x D k g D | g f x X k R Y x f k = k g D | g f x X k R Y x f k
68 fveq2 k = x f j X k = X x f j
69 oveq2 k = x f j x f k = x f x f j
70 69 fveq2d k = x f j Y x f k = Y x f x f j
71 68 70 oveq12d k = x f j X k R Y x f k = X x f j R Y x f x f j
72 65 66 67 71 fmptco φ x D k g D | g f x X k R Y x f k j g D | g f x x f j = j g D | g f x X x f j R Y x f x f j
73 4 psrbagf I V x D x : I 0
74 2 73 sylan φ x D x : I 0
75 74 adantr φ x D j g D | g f x x : I 0
76 75 ffvelrnda φ x D j g D | g f x z I x z 0
77 breq1 g = j g f x j f x
78 77 elrab j g D | g f x j D j f x
79 63 78 sylib φ x D j g D | g f x j D j f x
80 79 simpld φ x D j g D | g f x j D
81 4 psrbagf I V j D j : I 0
82 61 80 81 syl2anc φ x D j g D | g f x j : I 0
83 82 ffvelrnda φ x D j g D | g f x z I j z 0
84 nn0cn x z 0 x z
85 nn0cn j z 0 j z
86 nncan x z j z x z x z j z = j z
87 84 85 86 syl2an x z 0 j z 0 x z x z j z = j z
88 76 83 87 syl2anc φ x D j g D | g f x z I x z x z j z = j z
89 88 mpteq2dva φ x D j g D | g f x z I x z x z j z = z I j z
90 ovex x z j z V
91 90 a1i φ x D j g D | g f x z I x z j z V
92 75 feqmptd φ x D j g D | g f x x = z I x z
93 82 feqmptd φ x D j g D | g f x j = z I j z
94 61 76 83 92 93 offval2 φ x D j g D | g f x x f j = z I x z j z
95 61 76 91 92 94 offval2 φ x D j g D | g f x x f x f j = z I x z x z j z
96 89 95 93 3eqtr4d φ x D j g D | g f x x f x f j = j
97 96 fveq2d φ x D j g D | g f x Y x f x f j = Y j
98 97 oveq2d φ x D j g D | g f x X x f j R Y x f x f j = X x f j R Y j
99 9 ad2antrr φ x D j g D | g f x R CRing
100 18 ad2antrr φ x D j g D | g f x X : D Base R
101 79 simprd φ x D j g D | g f x j f x
102 4 psrbagcon I V x D j : I 0 j f x x f j D x f j f x
103 61 62 82 101 102 syl13anc φ x D j g D | g f x x f j D x f j f x
104 103 simpld φ x D j g D | g f x x f j D
105 100 104 ffvelrnd φ x D j g D | g f x X x f j Base R
106 26 ad2antrr φ x D j g D | g f x Y : D Base R
107 106 80 ffvelrnd φ x D j g D | g f x Y j Base R
108 10 37 crngcom R CRing X x f j Base R Y j Base R X x f j R Y j = Y j R X x f j
109 99 105 107 108 syl3anc φ x D j g D | g f x X x f j R Y j = Y j R X x f j
110 98 109 eqtrd φ x D j g D | g f x X x f j R Y x f x f j = Y j R X x f j
111 110 mpteq2dva φ x D j g D | g f x X x f j R Y x f x f j = j g D | g f x Y j R X x f j
112 72 111 eqtrd φ x D k g D | g f x X k R Y x f k j g D | g f x x f j = j g D | g f x Y j R X x f j
113 112 oveq2d φ x D R k g D | g f x X k R Y x f k j g D | g f x x f j = R j g D | g f x Y j R X x f j
114 60 113 eqtrd φ x D R k g D | g f x X k R Y x f k = R j g D | g f x Y j R X x f j
115 114 mpteq2dva φ x D R k g D | g f x X k R Y x f k = x D R j g D | g f x Y j R X x f j
116 1 6 37 5 4 7 8 psrmulfval φ X × ˙ Y = x D R k g D | g f x X k R Y x f k
117 1 6 37 5 4 8 7 psrmulfval φ Y × ˙ X = x D R j g D | g f x Y j R X x f j
118 115 116 117 3eqtr4d φ X × ˙ Y = Y × ˙ X