| Step |
Hyp |
Ref |
Expression |
| 1 |
|
psrring.s |
⊢ 𝑆 = ( 𝐼 mPwSer 𝑅 ) |
| 2 |
|
psrring.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
psrring.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
psrass.d |
⊢ 𝐷 = { 𝑓 ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ 𝑓 “ ℕ ) ∈ Fin } |
| 5 |
|
psrass.t |
⊢ × = ( .r ‘ 𝑆 ) |
| 6 |
|
psrass.b |
⊢ 𝐵 = ( Base ‘ 𝑆 ) |
| 7 |
|
psrass.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 8 |
|
psrass.y |
⊢ ( 𝜑 → 𝑌 ∈ 𝐵 ) |
| 9 |
|
psrcom.c |
⊢ ( 𝜑 → 𝑅 ∈ CRing ) |
| 10 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 11 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 12 |
|
ringcmn |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ CMnd ) |
| 13 |
3 12
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ CMnd ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑅 ∈ CMnd ) |
| 15 |
4
|
psrbaglefi |
⊢ ( 𝑥 ∈ 𝐷 → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ) |
| 16 |
15
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ) |
| 17 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ Ring ) |
| 18 |
1 10 4 6 7
|
psrelbas |
⊢ ( 𝜑 → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 20 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 21 |
|
breq1 |
⊢ ( 𝑔 = 𝑘 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑘 ∘r ≤ 𝑥 ) ) |
| 22 |
21
|
elrab |
⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 23 |
20 22
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑘 ∈ 𝐷 ∧ 𝑘 ∘r ≤ 𝑥 ) ) |
| 24 |
23
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∈ 𝐷 ) |
| 25 |
19 24
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ) |
| 26 |
1 10 4 6 8
|
psrelbas |
⊢ ( 𝜑 → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 27 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 28 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) |
| 29 |
4
|
psrbagf |
⊢ ( 𝑘 ∈ 𝐷 → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 30 |
24 29
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 : 𝐼 ⟶ ℕ0 ) |
| 31 |
23
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑘 ∘r ≤ 𝑥 ) |
| 32 |
4
|
psrbagcon |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑘 : 𝐼 ⟶ ℕ0 ∧ 𝑘 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 33 |
28 30 31 32
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑘 ) ∘r ≤ 𝑥 ) ) |
| 34 |
33
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑘 ) ∈ 𝐷 ) |
| 35 |
27 34
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 37 |
10 36
|
ringcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ‘ 𝑘 ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 38 |
17 25 35 37
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 39 |
38
|
fmpttd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ⟶ ( Base ‘ 𝑅 ) ) |
| 40 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 41 |
4 40
|
rabex2 |
⊢ 𝐷 ∈ V |
| 42 |
41
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝐷 ∈ V ) |
| 43 |
|
rabexg |
⊢ ( 𝐷 ∈ V → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ V ) |
| 44 |
42 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ V ) |
| 45 |
44
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∈ V ) |
| 46 |
|
funmpt |
⊢ Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 47 |
46
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 48 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 0g ‘ 𝑅 ) ∈ V ) |
| 49 |
|
suppssdm |
⊢ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ dom ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 50 |
|
eqid |
⊢ ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) |
| 51 |
50
|
dmmptss |
⊢ dom ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 52 |
49 51
|
sstri |
⊢ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 53 |
52
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 54 |
|
suppssfifsupp |
⊢ ( ( ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∈ V ∧ Fun ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∧ ( 0g ‘ 𝑅 ) ∈ V ) ∧ ( { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ∈ Fin ∧ ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) supp ( 0g ‘ 𝑅 ) ) ⊆ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 55 |
45 47 48 16 53 54
|
syl32anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) finSupp ( 0g ‘ 𝑅 ) ) |
| 56 |
|
eqid |
⊢ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } = { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } |
| 57 |
4 56
|
psrbagconf1o |
⊢ ( 𝑥 ∈ 𝐷 → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } –1-1-onto→ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 58 |
57
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) : { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } –1-1-onto→ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 59 |
10 11 14 16 39 55 58
|
gsumf1o |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 60 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 ∈ 𝐷 ) |
| 61 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 62 |
4 56
|
psrbagconcl |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 63 |
60 61 62
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) |
| 64 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 65 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) = ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) |
| 66 |
|
fveq2 |
⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑋 ‘ 𝑘 ) = ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) |
| 67 |
|
oveq2 |
⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑥 ∘f − 𝑘 ) = ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) |
| 68 |
67
|
fveq2d |
⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) = ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 69 |
66 68
|
oveq12d |
⊢ ( 𝑘 = ( 𝑥 ∘f − 𝑗 ) → ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) = ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 70 |
63 64 65 69
|
fmptco |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 71 |
4
|
psrbagf |
⊢ ( 𝑥 ∈ 𝐷 → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 72 |
71
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 73 |
72
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 : 𝐼 ⟶ ℕ0 ) |
| 74 |
73
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ) |
| 75 |
|
breq1 |
⊢ ( 𝑔 = 𝑗 → ( 𝑔 ∘r ≤ 𝑥 ↔ 𝑗 ∘r ≤ 𝑥 ) ) |
| 76 |
75
|
elrab |
⊢ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↔ ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 77 |
61 76
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑗 ∈ 𝐷 ∧ 𝑗 ∘r ≤ 𝑥 ) ) |
| 78 |
77
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∈ 𝐷 ) |
| 79 |
4
|
psrbagf |
⊢ ( 𝑗 ∈ 𝐷 → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 80 |
78 79
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 : 𝐼 ⟶ ℕ0 ) |
| 81 |
80
|
ffvelcdmda |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) |
| 82 |
|
nn0cn |
⊢ ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑥 ‘ 𝑧 ) ∈ ℂ ) |
| 83 |
|
nn0cn |
⊢ ( ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 → ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) |
| 84 |
|
nncan |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℂ ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℂ ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) |
| 85 |
82 83 84
|
syl2an |
⊢ ( ( ( 𝑥 ‘ 𝑧 ) ∈ ℕ0 ∧ ( 𝑗 ‘ 𝑧 ) ∈ ℕ0 ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) |
| 86 |
74 81 85
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) = ( 𝑗 ‘ 𝑧 ) ) |
| 87 |
86
|
mpteq2dva |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 88 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝐼 ∈ 𝑉 ) |
| 89 |
|
ovex |
⊢ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V |
| 90 |
89
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) ∧ 𝑧 ∈ 𝐼 ) → ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ∈ V ) |
| 91 |
73
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑥 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑥 ‘ 𝑧 ) ) ) |
| 92 |
80
|
feqmptd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 = ( 𝑧 ∈ 𝐼 ↦ ( 𝑗 ‘ 𝑧 ) ) ) |
| 93 |
88 74 81 91 92
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) |
| 94 |
88 74 90 91 93
|
offval2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) = ( 𝑧 ∈ 𝐼 ↦ ( ( 𝑥 ‘ 𝑧 ) − ( ( 𝑥 ‘ 𝑧 ) − ( 𝑗 ‘ 𝑧 ) ) ) ) ) |
| 95 |
87 94 92
|
3eqtr4d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) = 𝑗 ) |
| 96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑌 ‘ 𝑗 ) ) |
| 97 |
96
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) ) |
| 98 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑅 ∈ CRing ) |
| 99 |
18
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑋 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 100 |
77
|
simprd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑗 ∘r ≤ 𝑥 ) |
| 101 |
4
|
psrbagcon |
⊢ ( ( 𝑥 ∈ 𝐷 ∧ 𝑗 : 𝐼 ⟶ ℕ0 ∧ 𝑗 ∘r ≤ 𝑥 ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 102 |
60 80 100 101
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ∧ ( 𝑥 ∘f − 𝑗 ) ∘r ≤ 𝑥 ) ) |
| 103 |
102
|
simpld |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑥 ∘f − 𝑗 ) ∈ 𝐷 ) |
| 104 |
99 103
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 105 |
26
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → 𝑌 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 106 |
105 78
|
ffvelcdmd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( 𝑌 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) |
| 107 |
10 36
|
crngcom |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ∈ ( Base ‘ 𝑅 ) ∧ ( 𝑌 ‘ 𝑗 ) ∈ ( Base ‘ 𝑅 ) ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 108 |
98 104 106 107
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ 𝑗 ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 109 |
97 108
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) ∧ 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ) → ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) |
| 110 |
109
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − ( 𝑥 ∘f − 𝑗 ) ) ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 111 |
70 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) = ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) |
| 112 |
111
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ∘ ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( 𝑥 ∘f − 𝑗 ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 113 |
59 112
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐷 ) → ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) = ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) |
| 114 |
113
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 115 |
1 6 36 5 4 7 8
|
psrmulfval |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑘 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑋 ‘ 𝑘 ) ( .r ‘ 𝑅 ) ( 𝑌 ‘ ( 𝑥 ∘f − 𝑘 ) ) ) ) ) ) ) |
| 116 |
1 6 36 5 4 8 7
|
psrmulfval |
⊢ ( 𝜑 → ( 𝑌 × 𝑋 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝑅 Σg ( 𝑗 ∈ { 𝑔 ∈ 𝐷 ∣ 𝑔 ∘r ≤ 𝑥 } ↦ ( ( 𝑌 ‘ 𝑗 ) ( .r ‘ 𝑅 ) ( 𝑋 ‘ ( 𝑥 ∘f − 𝑗 ) ) ) ) ) ) ) |
| 117 |
114 115 116
|
3eqtr4d |
⊢ ( 𝜑 → ( 𝑋 × 𝑌 ) = ( 𝑌 × 𝑋 ) ) |