Metamath Proof Explorer


Theorem psradd

Description: The addition operation of the multivariate power series structure. (Contributed by Mario Carneiro, 28-Dec-2014)

Ref Expression
Hypotheses psrplusg.s S=ImPwSerR
psrplusg.b B=BaseS
psrplusg.a +˙=+R
psrplusg.p ˙=+S
psradd.x φXB
psradd.y φYB
Assertion psradd φX˙Y=X+˙fY

Proof

Step Hyp Ref Expression
1 psrplusg.s S=ImPwSerR
2 psrplusg.b B=BaseS
3 psrplusg.a +˙=+R
4 psrplusg.p ˙=+S
5 psradd.x φXB
6 psradd.y φYB
7 1 2 3 4 psrplusg ˙=f+˙B×B
8 7 oveqi X˙Y=Xf+˙B×BY
9 5 6 ofmresval φXf+˙B×BY=X+˙fY
10 8 9 eqtrid φX˙Y=X+˙fY