| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mvrfval.v |  |-  V = ( I mVar R ) | 
						
							| 2 |  | mvrfval.d |  |-  D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } | 
						
							| 3 |  | mvrfval.z |  |-  .0. = ( 0g ` R ) | 
						
							| 4 |  | mvrfval.o |  |-  .1. = ( 1r ` R ) | 
						
							| 5 |  | mvrfval.i |  |-  ( ph -> I e. W ) | 
						
							| 6 |  | mvrfval.r |  |-  ( ph -> R e. Y ) | 
						
							| 7 | 5 | elexd |  |-  ( ph -> I e. _V ) | 
						
							| 8 | 6 | elexd |  |-  ( ph -> R e. _V ) | 
						
							| 9 | 5 | mptexd |  |-  ( ph -> ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) e. _V ) | 
						
							| 10 |  | simpl |  |-  ( ( i = I /\ r = R ) -> i = I ) | 
						
							| 11 | 10 | oveq2d |  |-  ( ( i = I /\ r = R ) -> ( NN0 ^m i ) = ( NN0 ^m I ) ) | 
						
							| 12 | 11 | rabeqdv |  |-  ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } ) | 
						
							| 13 | 12 2 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } = D ) | 
						
							| 14 |  | mpteq1 |  |-  ( i = I -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) | 
						
							| 15 | 14 | adantr |  |-  ( ( i = I /\ r = R ) -> ( y e. i |-> if ( y = x , 1 , 0 ) ) = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) | 
						
							| 16 | 15 | eqeq2d |  |-  ( ( i = I /\ r = R ) -> ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) <-> f = ( y e. I |-> if ( y = x , 1 , 0 ) ) ) ) | 
						
							| 17 |  | simpr |  |-  ( ( i = I /\ r = R ) -> r = R ) | 
						
							| 18 | 17 | fveq2d |  |-  ( ( i = I /\ r = R ) -> ( 1r ` r ) = ( 1r ` R ) ) | 
						
							| 19 | 18 4 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> ( 1r ` r ) = .1. ) | 
						
							| 20 | 17 | fveq2d |  |-  ( ( i = I /\ r = R ) -> ( 0g ` r ) = ( 0g ` R ) ) | 
						
							| 21 | 20 3 | eqtr4di |  |-  ( ( i = I /\ r = R ) -> ( 0g ` r ) = .0. ) | 
						
							| 22 | 16 19 21 | ifbieq12d |  |-  ( ( i = I /\ r = R ) -> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) = if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) | 
						
							| 23 | 13 22 | mpteq12dv |  |-  ( ( i = I /\ r = R ) -> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) = ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) | 
						
							| 24 | 10 23 | mpteq12dv |  |-  ( ( i = I /\ r = R ) -> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) | 
						
							| 25 |  | df-mvr |  |-  mVar = ( i e. _V , r e. _V |-> ( x e. i |-> ( f e. { h e. ( NN0 ^m i ) | ( `' h " NN ) e. Fin } |-> if ( f = ( y e. i |-> if ( y = x , 1 , 0 ) ) , ( 1r ` r ) , ( 0g ` r ) ) ) ) ) | 
						
							| 26 | 24 25 | ovmpoga |  |-  ( ( I e. _V /\ R e. _V /\ ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) e. _V ) -> ( I mVar R ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) | 
						
							| 27 | 7 8 9 26 | syl3anc |  |-  ( ph -> ( I mVar R ) = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) | 
						
							| 28 | 1 27 | eqtrid |  |-  ( ph -> V = ( x e. I |-> ( f e. D |-> if ( f = ( y e. I |-> if ( y = x , 1 , 0 ) ) , .1. , .0. ) ) ) ) |