Metamath Proof Explorer


Theorem mvrfval

Description: Value of the generating elements of the power series structure. (Contributed by Mario Carneiro, 7-Jan-2015)

Ref Expression
Hypotheses mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
mvrfval.z 0 = ( 0g𝑅 )
mvrfval.o 1 = ( 1r𝑅 )
mvrfval.i ( 𝜑𝐼𝑊 )
mvrfval.r ( 𝜑𝑅𝑌 )
Assertion mvrfval ( 𝜑𝑉 = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )

Proof

Step Hyp Ref Expression
1 mvrfval.v 𝑉 = ( 𝐼 mVar 𝑅 )
2 mvrfval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin }
3 mvrfval.z 0 = ( 0g𝑅 )
4 mvrfval.o 1 = ( 1r𝑅 )
5 mvrfval.i ( 𝜑𝐼𝑊 )
6 mvrfval.r ( 𝜑𝑅𝑌 )
7 5 elexd ( 𝜑𝐼 ∈ V )
8 6 elexd ( 𝜑𝑅 ∈ V )
9 5 mptexd ( 𝜑 → ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V )
10 simpl ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → 𝑖 = 𝐼 )
11 10 oveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
12 11 rabeqdv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = { ∈ ( ℕ0m 𝐼 ) ∣ ( “ ℕ ) ∈ Fin } )
13 12 2 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } = 𝐷 )
14 mpteq1 ( 𝑖 = 𝐼 → ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) )
15 14 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) )
16 15 eqeq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑓 = ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ↔ 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) )
17 simpr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → 𝑟 = 𝑅 )
18 17 fveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 1r𝑟 ) = ( 1r𝑅 ) )
19 18 4 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 1r𝑟 ) = 1 )
20 17 fveq2d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 0g𝑟 ) = ( 0g𝑅 ) )
21 20 3 eqtr4di ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 0g𝑟 ) = 0 )
22 16 19 21 ifbieq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → if ( 𝑓 = ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r𝑟 ) , ( 0g𝑟 ) ) = if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) )
23 13 22 mpteq12dv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑓 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r𝑟 ) , ( 0g𝑟 ) ) ) = ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) )
24 10 23 mpteq12dv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑥𝑖 ↦ ( 𝑓 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r𝑟 ) , ( 0g𝑟 ) ) ) ) = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )
25 df-mvr mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥𝑖 ↦ ( 𝑓 ∈ { ∈ ( ℕ0m 𝑖 ) ∣ ( “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r𝑟 ) , ( 0g𝑟 ) ) ) ) )
26 24 25 ovmpoga ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V ) → ( 𝐼 mVar 𝑅 ) = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )
27 7 8 9 26 syl3anc ( 𝜑 → ( 𝐼 mVar 𝑅 ) = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )
28 1 27 syl5eq ( 𝜑𝑉 = ( 𝑥𝐼 ↦ ( 𝑓𝐷 ↦ if ( 𝑓 = ( 𝑦𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) )