| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mvrfval.v |
⊢ 𝑉 = ( 𝐼 mVar 𝑅 ) |
| 2 |
|
mvrfval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 3 |
|
mvrfval.z |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 4 |
|
mvrfval.o |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 5 |
|
mvrfval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) |
| 6 |
|
mvrfval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑌 ) |
| 7 |
5
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 8 |
6
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 9 |
5
|
mptexd |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V ) |
| 10 |
|
simpl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑖 = 𝐼 ) |
| 11 |
10
|
oveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 12 |
11
|
rabeqdv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ) |
| 13 |
12 2
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } = 𝐷 ) |
| 14 |
|
mpteq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) |
| 16 |
15
|
eqeq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ↔ 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) ) ) |
| 17 |
|
simpr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → 𝑟 = 𝑅 ) |
| 18 |
17
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ 𝑟 ) = ( 1r ‘ 𝑅 ) ) |
| 19 |
18 4
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 1r ‘ 𝑟 ) = 1 ) |
| 20 |
17
|
fveq2d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = ( 0g ‘ 𝑅 ) ) |
| 21 |
20 3
|
eqtr4di |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 0g ‘ 𝑟 ) = 0 ) |
| 22 |
16 19 21
|
ifbieq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) = if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) |
| 23 |
13 22
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) = ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) |
| 24 |
10 23
|
mpteq12dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 25 |
|
df-mvr |
⊢ mVar = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑥 ∈ 𝑖 ↦ ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } ↦ if ( 𝑓 = ( 𝑦 ∈ 𝑖 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , ( 1r ‘ 𝑟 ) , ( 0g ‘ 𝑟 ) ) ) ) ) |
| 26 |
24 25
|
ovmpoga |
⊢ ( ( 𝐼 ∈ V ∧ 𝑅 ∈ V ∧ ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ∈ V ) → ( 𝐼 mVar 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 27 |
7 8 9 26
|
syl3anc |
⊢ ( 𝜑 → ( 𝐼 mVar 𝑅 ) = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |
| 28 |
1 27
|
eqtrid |
⊢ ( 𝜑 → 𝑉 = ( 𝑥 ∈ 𝐼 ↦ ( 𝑓 ∈ 𝐷 ↦ if ( 𝑓 = ( 𝑦 ∈ 𝐼 ↦ if ( 𝑦 = 𝑥 , 1 , 0 ) ) , 1 , 0 ) ) ) ) |