| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 |  | pm2mpcl.l |  |-  L = ( Base ` Q ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 12 |  | eqid |  |-  ( 0g ` Q ) = ( 0g ` Q ) | 
						
							| 13 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 14 | 8 | ply1ring |  |-  ( A e. Ring -> Q e. Ring ) | 
						
							| 15 |  | ringcmn |  |-  ( Q e. Ring -> Q e. CMnd ) | 
						
							| 16 | 13 14 15 | 3syl |  |-  ( ( N e. Fin /\ R e. Ring ) -> Q e. CMnd ) | 
						
							| 17 | 16 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. CMnd ) | 
						
							| 18 |  | nn0ex |  |-  NN0 e. _V | 
						
							| 19 | 18 | a1i |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> NN0 e. _V ) | 
						
							| 20 | 13 | 3adant3 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> A e. Ring ) | 
						
							| 21 | 20 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> A e. Ring ) | 
						
							| 22 |  | simpl2 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 23 |  | simpl3 |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> M e. B ) | 
						
							| 24 |  | simpr |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 25 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 26 | 1 2 3 7 25 | decpmatcl |  |-  ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 27 | 22 23 24 26 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 28 |  | eqid |  |-  ( mulGrp ` Q ) = ( mulGrp ` Q ) | 
						
							| 29 | 25 8 6 4 28 5 10 | ply1tmcl |  |-  ( ( A e. Ring /\ ( M decompPMat k ) e. ( Base ` A ) /\ k e. NN0 ) -> ( ( M decompPMat k ) .* ( k .^ X ) ) e. L ) | 
						
							| 30 | 21 27 24 29 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( ( M decompPMat k ) .* ( k .^ X ) ) e. L ) | 
						
							| 31 | 30 | fmpttd |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) : NN0 --> L ) | 
						
							| 32 | 8 | ply1lmod |  |-  ( A e. Ring -> Q e. LMod ) | 
						
							| 33 | 20 32 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> Q e. LMod ) | 
						
							| 34 |  | eqidd |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Scalar ` Q ) = ( Scalar ` Q ) ) | 
						
							| 35 | 8 6 28 5 10 | ply1moncl |  |-  ( ( A e. Ring /\ k e. NN0 ) -> ( k .^ X ) e. L ) | 
						
							| 36 | 20 35 | sylan |  |-  ( ( ( N e. Fin /\ R e. Ring /\ M e. B ) /\ k e. NN0 ) -> ( k .^ X ) e. L ) | 
						
							| 37 |  | eqid |  |-  ( 0g ` ( Scalar ` Q ) ) = ( 0g ` ( Scalar ` Q ) ) | 
						
							| 38 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 39 | 1 2 3 7 38 | decpmatfsupp |  |-  ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 40 | 39 | 3adant1 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 41 | 8 | ply1sca |  |-  ( A e. Ring -> A = ( Scalar ` Q ) ) | 
						
							| 42 | 41 | eqcomd |  |-  ( A e. Ring -> ( Scalar ` Q ) = A ) | 
						
							| 43 | 20 42 | syl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Scalar ` Q ) = A ) | 
						
							| 44 | 43 | fveq2d |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( 0g ` ( Scalar ` Q ) ) = ( 0g ` A ) ) | 
						
							| 45 | 40 44 | breqtrrd |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` ( Scalar ` Q ) ) ) | 
						
							| 46 | 19 33 34 10 27 36 12 37 4 45 | mptscmfsupp0 |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) finSupp ( 0g ` Q ) ) | 
						
							| 47 | 10 12 17 19 31 46 | gsumcl |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) e. L ) | 
						
							| 48 | 11 47 | eqeltrd |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) e. L ) |