Metamath Proof Explorer


Theorem pm2mpf

Description: The transformation of polynomial matrices into polynomials over matrices is a function mapping polynomial matrices to polynomials over matrices. (Contributed by AV, 5-Oct-2019) (Revised by AV, 5-Dec-2019)

Ref Expression
Hypotheses pm2mpval.p
|- P = ( Poly1 ` R )
pm2mpval.c
|- C = ( N Mat P )
pm2mpval.b
|- B = ( Base ` C )
pm2mpval.m
|- .* = ( .s ` Q )
pm2mpval.e
|- .^ = ( .g ` ( mulGrp ` Q ) )
pm2mpval.x
|- X = ( var1 ` A )
pm2mpval.a
|- A = ( N Mat R )
pm2mpval.q
|- Q = ( Poly1 ` A )
pm2mpval.t
|- T = ( N pMatToMatPoly R )
pm2mpcl.l
|- L = ( Base ` Q )
Assertion pm2mpf
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> L )

Proof

Step Hyp Ref Expression
1 pm2mpval.p
 |-  P = ( Poly1 ` R )
2 pm2mpval.c
 |-  C = ( N Mat P )
3 pm2mpval.b
 |-  B = ( Base ` C )
4 pm2mpval.m
 |-  .* = ( .s ` Q )
5 pm2mpval.e
 |-  .^ = ( .g ` ( mulGrp ` Q ) )
6 pm2mpval.x
 |-  X = ( var1 ` A )
7 pm2mpval.a
 |-  A = ( N Mat R )
8 pm2mpval.q
 |-  Q = ( Poly1 ` A )
9 pm2mpval.t
 |-  T = ( N pMatToMatPoly R )
10 pm2mpcl.l
 |-  L = ( Base ` Q )
11 ovexd
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) e. _V )
12 1 2 3 4 5 6 7 8 9 pm2mpval
 |-  ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) )
13 1 2 3 4 5 6 7 8 9 10 pm2mpcl
 |-  ( ( N e. Fin /\ R e. Ring /\ b e. B ) -> ( T ` b ) e. L )
14 13 3expa
 |-  ( ( ( N e. Fin /\ R e. Ring ) /\ b e. B ) -> ( T ` b ) e. L )
15 11 12 14 fmpt2d
 |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> L )