| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 |  | pm2mpcl.l |  |-  L = ( Base ` Q ) | 
						
							| 11 |  | ovexd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) e. _V ) | 
						
							| 12 | 1 2 3 4 5 6 7 8 9 | pm2mpval |  |-  ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 10 | pm2mpcl |  |-  ( ( N e. Fin /\ R e. Ring /\ b e. B ) -> ( T ` b ) e. L ) | 
						
							| 14 | 13 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ b e. B ) -> ( T ` b ) e. L ) | 
						
							| 15 | 11 12 14 | fmpt2d |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> L ) |