Step |
Hyp |
Ref |
Expression |
1 |
|
pm2mpval.p |
|- P = ( Poly1 ` R ) |
2 |
|
pm2mpval.c |
|- C = ( N Mat P ) |
3 |
|
pm2mpval.b |
|- B = ( Base ` C ) |
4 |
|
pm2mpval.m |
|- .* = ( .s ` Q ) |
5 |
|
pm2mpval.e |
|- .^ = ( .g ` ( mulGrp ` Q ) ) |
6 |
|
pm2mpval.x |
|- X = ( var1 ` A ) |
7 |
|
pm2mpval.a |
|- A = ( N Mat R ) |
8 |
|
pm2mpval.q |
|- Q = ( Poly1 ` A ) |
9 |
|
pm2mpval.t |
|- T = ( N pMatToMatPoly R ) |
10 |
|
pm2mpcl.l |
|- L = ( Base ` Q ) |
11 |
|
ovexd |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ m e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) e. _V ) |
12 |
1 2 3 4 5 6 7 8 9
|
pm2mpval |
|- ( ( N e. Fin /\ R e. Ring ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) |
13 |
1 2 3 4 5 6 7 8 9 10
|
pm2mpcl |
|- ( ( N e. Fin /\ R e. Ring /\ b e. B ) -> ( T ` b ) e. L ) |
14 |
13
|
3expa |
|- ( ( ( N e. Fin /\ R e. Ring ) /\ b e. B ) -> ( T ` b ) e. L ) |
15 |
11 12 14
|
fmpt2d |
|- ( ( N e. Fin /\ R e. Ring ) -> T : B --> L ) |