| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 |  | pm2mpcl.l |  |-  L = ( Base ` Q ) | 
						
							| 11 | 1 2 3 4 5 6 7 8 9 10 | pm2mpf |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B --> L ) | 
						
							| 12 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 13 | 12 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> A e. Ring ) | 
						
							| 14 | 1 2 3 4 5 6 7 8 9 10 | pm2mpcl |  |-  ( ( N e. Fin /\ R e. Ring /\ u e. B ) -> ( T ` u ) e. L ) | 
						
							| 15 | 14 | 3expa |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ u e. B ) -> ( T ` u ) e. L ) | 
						
							| 16 | 15 | adantrr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( T ` u ) e. L ) | 
						
							| 17 | 1 2 3 4 5 6 7 8 9 10 | pm2mpcl |  |-  ( ( N e. Fin /\ R e. Ring /\ w e. B ) -> ( T ` w ) e. L ) | 
						
							| 18 | 17 | 3expia |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( w e. B -> ( T ` w ) e. L ) ) | 
						
							| 19 | 18 | adantld |  |-  ( ( N e. Fin /\ R e. Ring ) -> ( ( u e. B /\ w e. B ) -> ( T ` w ) e. L ) ) | 
						
							| 20 | 19 | imp |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( T ` w ) e. L ) | 
						
							| 21 |  | eqid |  |-  ( coe1 ` ( T ` u ) ) = ( coe1 ` ( T ` u ) ) | 
						
							| 22 |  | eqid |  |-  ( coe1 ` ( T ` w ) ) = ( coe1 ` ( T ` w ) ) | 
						
							| 23 | 8 10 21 22 | ply1coe1eq |  |-  ( ( A e. Ring /\ ( T ` u ) e. L /\ ( T ` w ) e. L ) -> ( A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) <-> ( T ` u ) = ( T ` w ) ) ) | 
						
							| 24 | 23 | bicomd |  |-  ( ( A e. Ring /\ ( T ` u ) e. L /\ ( T ` w ) e. L ) -> ( ( T ` u ) = ( T ` w ) <-> A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) ) | 
						
							| 25 | 13 16 20 24 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( ( T ` u ) = ( T ` w ) <-> A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) ) | 
						
							| 26 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> N e. Fin ) | 
						
							| 27 |  | simplr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> R e. Ring ) | 
						
							| 28 |  | simprl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> u e. B ) | 
						
							| 29 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ u e. B ) -> ( T ` u ) = ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 30 | 26 27 28 29 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( T ` u ) = ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 31 | 30 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( T ` u ) = ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( coe1 ` ( T ` u ) ) = ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 33 | 32 | fveq1d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) ) | 
						
							| 34 |  | simplll |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( N e. Fin /\ R e. Ring ) ) | 
						
							| 35 | 28 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) -> u e. B ) | 
						
							| 36 | 35 | anim1i |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( u e. B /\ n e. NN0 ) ) | 
						
							| 37 | 1 2 3 4 5 6 7 8 | pm2mpf1lem |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ n e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) = ( u decompPMat n ) ) | 
						
							| 38 | 34 36 37 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( u decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) = ( u decompPMat n ) ) | 
						
							| 39 | 33 38 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( T ` u ) ) ` n ) = ( u decompPMat n ) ) | 
						
							| 40 |  | simprr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> w e. B ) | 
						
							| 41 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ w e. B ) -> ( T ` w ) = ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 42 | 26 27 40 41 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( T ` w ) = ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 43 | 42 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( coe1 ` ( T ` w ) ) = ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 44 | 43 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( ( coe1 ` ( T ` w ) ) ` n ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) ) | 
						
							| 45 | 44 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( T ` w ) ) ` n ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) ) | 
						
							| 46 | 40 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) -> w e. B ) | 
						
							| 47 | 46 | anim1i |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( w e. B /\ n e. NN0 ) ) | 
						
							| 48 | 1 2 3 4 5 6 7 8 | pm2mpf1lem |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( w e. B /\ n e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) = ( w decompPMat n ) ) | 
						
							| 49 | 34 47 48 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( w decompPMat k ) .* ( k .^ X ) ) ) ) ) ` n ) = ( w decompPMat n ) ) | 
						
							| 50 | 45 49 | eqtrd |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( T ` w ) ) ` n ) = ( w decompPMat n ) ) | 
						
							| 51 | 39 50 | eqeq12d |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) <-> ( u decompPMat n ) = ( w decompPMat n ) ) ) | 
						
							| 52 | 2 3 | decpmatval |  |-  ( ( u e. B /\ n e. NN0 ) -> ( u decompPMat n ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) ) | 
						
							| 53 | 28 52 | sylan |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( u decompPMat n ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) ) | 
						
							| 54 | 2 3 | decpmatval |  |-  ( ( w e. B /\ n e. NN0 ) -> ( w decompPMat n ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) ) | 
						
							| 55 | 40 54 | sylan |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( w decompPMat n ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) ) | 
						
							| 56 | 53 55 | eqeq12d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( ( u decompPMat n ) = ( w decompPMat n ) <-> ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) ) ) | 
						
							| 57 |  | eqid |  |-  ( Base ` R ) = ( Base ` R ) | 
						
							| 58 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 59 |  | simplll |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> N e. Fin ) | 
						
							| 60 |  | simpllr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> R e. Ring ) | 
						
							| 61 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 62 |  | simp2 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> i e. N ) | 
						
							| 63 |  | simp3 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> j e. N ) | 
						
							| 64 | 3 | eleq2i |  |-  ( u e. B <-> u e. ( Base ` C ) ) | 
						
							| 65 | 64 | biimpi |  |-  ( u e. B -> u e. ( Base ` C ) ) | 
						
							| 66 | 65 | adantr |  |-  ( ( u e. B /\ w e. B ) -> u e. ( Base ` C ) ) | 
						
							| 67 | 66 | ad2antlr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> u e. ( Base ` C ) ) | 
						
							| 68 | 67 | 3ad2ant1 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> u e. ( Base ` C ) ) | 
						
							| 69 | 68 3 | eleqtrrdi |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> u e. B ) | 
						
							| 70 | 2 61 3 62 63 69 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( i u j ) e. ( Base ` P ) ) | 
						
							| 71 |  | simp1r |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> n e. NN0 ) | 
						
							| 72 |  | eqid |  |-  ( coe1 ` ( i u j ) ) = ( coe1 ` ( i u j ) ) | 
						
							| 73 | 72 61 1 57 | coe1fvalcl |  |-  ( ( ( i u j ) e. ( Base ` P ) /\ n e. NN0 ) -> ( ( coe1 ` ( i u j ) ) ` n ) e. ( Base ` R ) ) | 
						
							| 74 | 70 71 73 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i u j ) ) ` n ) e. ( Base ` R ) ) | 
						
							| 75 | 7 57 58 59 60 74 | matbas2d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) e. ( Base ` A ) ) | 
						
							| 76 | 3 | eleq2i |  |-  ( w e. B <-> w e. ( Base ` C ) ) | 
						
							| 77 | 76 | biimpi |  |-  ( w e. B -> w e. ( Base ` C ) ) | 
						
							| 78 | 77 | ad2antll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> w e. ( Base ` C ) ) | 
						
							| 79 | 78 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> w e. ( Base ` C ) ) | 
						
							| 80 | 79 | 3ad2ant1 |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> w e. ( Base ` C ) ) | 
						
							| 81 | 80 3 | eleqtrrdi |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> w e. B ) | 
						
							| 82 | 2 61 3 62 63 81 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( i w j ) e. ( Base ` P ) ) | 
						
							| 83 |  | eqid |  |-  ( coe1 ` ( i w j ) ) = ( coe1 ` ( i w j ) ) | 
						
							| 84 | 83 61 1 57 | coe1fvalcl |  |-  ( ( ( i w j ) e. ( Base ` P ) /\ n e. NN0 ) -> ( ( coe1 ` ( i w j ) ) ` n ) e. ( Base ` R ) ) | 
						
							| 85 | 82 71 84 | syl2anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) /\ i e. N /\ j e. N ) -> ( ( coe1 ` ( i w j ) ) ` n ) e. ( Base ` R ) ) | 
						
							| 86 | 7 57 58 59 60 85 | matbas2d |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) e. ( Base ` A ) ) | 
						
							| 87 | 7 58 | eqmat |  |-  ( ( ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) e. ( Base ` A ) /\ ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) e. ( Base ` A ) ) -> ( ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) <-> A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) ) | 
						
							| 88 | 75 86 87 | syl2anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) <-> A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) ) | 
						
							| 89 | 56 88 | bitrd |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ n e. NN0 ) -> ( ( u decompPMat n ) = ( w decompPMat n ) <-> A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) ) | 
						
							| 90 | 89 | adantlr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( u decompPMat n ) = ( w decompPMat n ) <-> A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) ) | 
						
							| 91 |  | oveq1 |  |-  ( x = a -> ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) ) | 
						
							| 92 |  | oveq1 |  |-  ( x = a -> ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) | 
						
							| 93 | 91 92 | eqeq12d |  |-  ( x = a -> ( ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) <-> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) ) | 
						
							| 94 |  | oveq2 |  |-  ( y = b -> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) ) | 
						
							| 95 |  | oveq2 |  |-  ( y = b -> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) ) | 
						
							| 96 | 94 95 | eqeq12d |  |-  ( y = b -> ( ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) <-> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) ) ) | 
						
							| 97 | 93 96 | rspc2va |  |-  ( ( ( a e. N /\ b e. N ) /\ A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) -> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) ) | 
						
							| 98 |  | eqidd |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) ) | 
						
							| 99 |  | oveq12 |  |-  ( ( i = a /\ j = b ) -> ( i u j ) = ( a u b ) ) | 
						
							| 100 | 99 | fveq2d |  |-  ( ( i = a /\ j = b ) -> ( coe1 ` ( i u j ) ) = ( coe1 ` ( a u b ) ) ) | 
						
							| 101 | 100 | fveq1d |  |-  ( ( i = a /\ j = b ) -> ( ( coe1 ` ( i u j ) ) ` n ) = ( ( coe1 ` ( a u b ) ) ` n ) ) | 
						
							| 102 | 101 | adantl |  |-  ( ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) /\ ( i = a /\ j = b ) ) -> ( ( coe1 ` ( i u j ) ) ` n ) = ( ( coe1 ` ( a u b ) ) ` n ) ) | 
						
							| 103 |  | simplll |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> a e. N ) | 
						
							| 104 |  | simpllr |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> b e. N ) | 
						
							| 105 |  | fvexd |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( a u b ) ) ` n ) e. _V ) | 
						
							| 106 | 98 102 103 104 105 | ovmpod |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( ( coe1 ` ( a u b ) ) ` n ) ) | 
						
							| 107 |  | eqidd |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) = ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) ) | 
						
							| 108 |  | oveq12 |  |-  ( ( i = a /\ j = b ) -> ( i w j ) = ( a w b ) ) | 
						
							| 109 | 108 | fveq2d |  |-  ( ( i = a /\ j = b ) -> ( coe1 ` ( i w j ) ) = ( coe1 ` ( a w b ) ) ) | 
						
							| 110 | 109 | fveq1d |  |-  ( ( i = a /\ j = b ) -> ( ( coe1 ` ( i w j ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) /\ ( i = a /\ j = b ) ) -> ( ( coe1 ` ( i w j ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) | 
						
							| 112 |  | fvexd |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( ( coe1 ` ( a w b ) ) ` n ) e. _V ) | 
						
							| 113 | 107 111 103 104 112 | ovmpod |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) = ( ( coe1 ` ( a w b ) ) ` n ) ) | 
						
							| 114 | 106 113 | eqeq12d |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) <-> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 115 | 114 | biimpd |  |-  ( ( ( ( a e. N /\ b e. N ) /\ ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) ) /\ n e. NN0 ) -> ( ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 116 | 115 | exp31 |  |-  ( ( a e. N /\ b e. N ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) | 
						
							| 117 | 116 | com14 |  |-  ( ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) b ) = ( a ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) b ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( ( a e. N /\ b e. N ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) | 
						
							| 118 | 97 117 | syl |  |-  ( ( ( a e. N /\ b e. N ) /\ A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( ( a e. N /\ b e. N ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) | 
						
							| 119 | 118 | ex |  |-  ( ( a e. N /\ b e. N ) -> ( A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( ( a e. N /\ b e. N ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) ) | 
						
							| 120 | 119 | com25 |  |-  ( ( a e. N /\ b e. N ) -> ( ( a e. N /\ b e. N ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) ) | 
						
							| 121 | 120 | pm2.43i |  |-  ( ( a e. N /\ b e. N ) -> ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( n e. NN0 -> ( A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) ) | 
						
							| 122 | 121 | impcom |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) -> ( n e. NN0 -> ( A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) ) | 
						
							| 123 | 122 | imp |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( A. x e. N A. y e. N ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i u j ) ) ` n ) ) y ) = ( x ( i e. N , j e. N |-> ( ( coe1 ` ( i w j ) ) ` n ) ) y ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 124 | 90 123 | sylbid |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( u decompPMat n ) = ( w decompPMat n ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 125 | 51 124 | sylbid |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) /\ n e. NN0 ) -> ( ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) -> ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 126 | 125 | ralimdva |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ ( a e. N /\ b e. N ) ) -> ( A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) -> A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 127 | 126 | impancom |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) -> ( ( a e. N /\ b e. N ) -> A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 128 | 127 | imp |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) | 
						
							| 129 | 27 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> R e. Ring ) | 
						
							| 130 |  | simprl |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> a e. N ) | 
						
							| 131 |  | simprr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> b e. N ) | 
						
							| 132 | 66 | ad2antlr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) -> u e. ( Base ` C ) ) | 
						
							| 133 | 132 | adantr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> u e. ( Base ` C ) ) | 
						
							| 134 | 133 3 | eleqtrrdi |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> u e. B ) | 
						
							| 135 | 2 61 3 130 131 134 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> ( a u b ) e. ( Base ` P ) ) | 
						
							| 136 | 78 | ad2antrr |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> w e. ( Base ` C ) ) | 
						
							| 137 | 136 3 | eleqtrrdi |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> w e. B ) | 
						
							| 138 | 2 61 3 130 131 137 | matecld |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> ( a w b ) e. ( Base ` P ) ) | 
						
							| 139 |  | eqid |  |-  ( coe1 ` ( a u b ) ) = ( coe1 ` ( a u b ) ) | 
						
							| 140 |  | eqid |  |-  ( coe1 ` ( a w b ) ) = ( coe1 ` ( a w b ) ) | 
						
							| 141 | 1 61 139 140 | ply1coe1eq |  |-  ( ( R e. Ring /\ ( a u b ) e. ( Base ` P ) /\ ( a w b ) e. ( Base ` P ) ) -> ( A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) <-> ( a u b ) = ( a w b ) ) ) | 
						
							| 142 | 141 | bicomd |  |-  ( ( R e. Ring /\ ( a u b ) e. ( Base ` P ) /\ ( a w b ) e. ( Base ` P ) ) -> ( ( a u b ) = ( a w b ) <-> A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 143 | 129 135 138 142 | syl3anc |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> ( ( a u b ) = ( a w b ) <-> A. n e. NN0 ( ( coe1 ` ( a u b ) ) ` n ) = ( ( coe1 ` ( a w b ) ) ` n ) ) ) | 
						
							| 144 | 128 143 | mpbird |  |-  ( ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) /\ ( a e. N /\ b e. N ) ) -> ( a u b ) = ( a w b ) ) | 
						
							| 145 | 144 | ralrimivva |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) -> A. a e. N A. b e. N ( a u b ) = ( a w b ) ) | 
						
							| 146 | 2 3 | eqmat |  |-  ( ( u e. B /\ w e. B ) -> ( u = w <-> A. a e. N A. b e. N ( a u b ) = ( a w b ) ) ) | 
						
							| 147 | 146 | ad2antlr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) -> ( u = w <-> A. a e. N A. b e. N ( a u b ) = ( a w b ) ) ) | 
						
							| 148 | 145 147 | mpbird |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) /\ A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) ) -> u = w ) | 
						
							| 149 | 148 | ex |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( A. n e. NN0 ( ( coe1 ` ( T ` u ) ) ` n ) = ( ( coe1 ` ( T ` w ) ) ` n ) -> u = w ) ) | 
						
							| 150 | 25 149 | sylbid |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( u e. B /\ w e. B ) ) -> ( ( T ` u ) = ( T ` w ) -> u = w ) ) | 
						
							| 151 | 150 | ralrimivva |  |-  ( ( N e. Fin /\ R e. Ring ) -> A. u e. B A. w e. B ( ( T ` u ) = ( T ` w ) -> u = w ) ) | 
						
							| 152 |  | dff13 |  |-  ( T : B -1-1-> L <-> ( T : B --> L /\ A. u e. B A. w e. B ( ( T ` u ) = ( T ` w ) -> u = w ) ) ) | 
						
							| 153 | 11 151 152 | sylanbrc |  |-  ( ( N e. Fin /\ R e. Ring ) -> T : B -1-1-> L ) |