| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 |  | simpll |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> N e. Fin ) | 
						
							| 11 |  | simplr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> R e. Ring ) | 
						
							| 12 |  | simprl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> M e. B ) | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  |-  ( ( N e. Fin /\ R e. Ring /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 14 | 10 11 12 13 | syl3anc |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 15 | 14 | fveq2d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( coe1 ` ( T ` M ) ) = ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 16 | 15 | fveq1d |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( T ` M ) ) ` K ) = ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) ) | 
						
							| 17 |  | eqid |  |-  ( Base ` Q ) = ( Base ` Q ) | 
						
							| 18 | 7 | matring |  |-  ( ( N e. Fin /\ R e. Ring ) -> A e. Ring ) | 
						
							| 19 | 18 | adantr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> A e. Ring ) | 
						
							| 20 |  | eqid |  |-  ( Base ` A ) = ( Base ` A ) | 
						
							| 21 |  | eqid |  |-  ( 0g ` A ) = ( 0g ` A ) | 
						
							| 22 | 11 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 23 | 12 | adantr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> M e. B ) | 
						
							| 24 |  | simpr |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 25 | 1 2 3 7 20 | decpmatcl |  |-  ( ( R e. Ring /\ M e. B /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc |  |-  ( ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) /\ k e. NN0 ) -> ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 27 | 26 | ralrimiva |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> A. k e. NN0 ( M decompPMat k ) e. ( Base ` A ) ) | 
						
							| 28 | 1 2 3 7 21 | decpmatfsupp |  |-  ( ( R e. Ring /\ M e. B ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 29 | 28 | ad2ant2lr |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( k e. NN0 |-> ( M decompPMat k ) ) finSupp ( 0g ` A ) ) | 
						
							| 30 |  | simpr |  |-  ( ( M e. B /\ K e. NN0 ) -> K e. NN0 ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> K e. NN0 ) | 
						
							| 32 | 8 17 6 5 19 20 4 21 27 29 31 | gsummoncoe1 |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) ` K ) = [_ K / k ]_ ( M decompPMat k ) ) | 
						
							| 33 |  | csbov2g |  |-  ( K e. NN0 -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat [_ K / k ]_ k ) ) | 
						
							| 34 |  | csbvarg |  |-  ( K e. NN0 -> [_ K / k ]_ k = K ) | 
						
							| 35 | 34 | oveq2d |  |-  ( K e. NN0 -> ( M decompPMat [_ K / k ]_ k ) = ( M decompPMat K ) ) | 
						
							| 36 | 33 35 | eqtrd |  |-  ( K e. NN0 -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) | 
						
							| 37 | 36 | adantl |  |-  ( ( M e. B /\ K e. NN0 ) -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> [_ K / k ]_ ( M decompPMat k ) = ( M decompPMat K ) ) | 
						
							| 39 | 16 32 38 | 3eqtrd |  |-  ( ( ( N e. Fin /\ R e. Ring ) /\ ( M e. B /\ K e. NN0 ) ) -> ( ( coe1 ` ( T ` M ) ) ` K ) = ( M decompPMat K ) ) |