| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  | 
						
							| 2 |  | pm2mpval.c |  | 
						
							| 3 |  | pm2mpval.b |  | 
						
							| 4 |  | pm2mpval.m |  | 
						
							| 5 |  | pm2mpval.e |  | 
						
							| 6 |  | pm2mpval.x |  | 
						
							| 7 |  | pm2mpval.a |  | 
						
							| 8 |  | pm2mpval.q |  | 
						
							| 9 |  | pm2mpval.t |  | 
						
							| 10 |  | simpll |  | 
						
							| 11 |  | simplr |  | 
						
							| 12 |  | simprl |  | 
						
							| 13 | 1 2 3 4 5 6 7 8 9 | pm2mpfval |  | 
						
							| 14 | 10 11 12 13 | syl3anc |  | 
						
							| 15 | 14 | fveq2d |  | 
						
							| 16 | 15 | fveq1d |  | 
						
							| 17 |  | eqid |  | 
						
							| 18 | 7 | matring |  | 
						
							| 19 | 18 | adantr |  | 
						
							| 20 |  | eqid |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 | 11 | adantr |  | 
						
							| 23 | 12 | adantr |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 1 2 3 7 20 | decpmatcl |  | 
						
							| 26 | 22 23 24 25 | syl3anc |  | 
						
							| 27 | 26 | ralrimiva |  | 
						
							| 28 | 1 2 3 7 21 | decpmatfsupp |  | 
						
							| 29 | 28 | ad2ant2lr |  | 
						
							| 30 |  | simpr |  | 
						
							| 31 | 30 | adantl |  | 
						
							| 32 | 8 17 6 5 19 20 4 21 27 29 31 | gsummoncoe1 |  | 
						
							| 33 |  | csbov2g |  | 
						
							| 34 |  | csbvarg |  | 
						
							| 35 | 34 | oveq2d |  | 
						
							| 36 | 33 35 | eqtrd |  | 
						
							| 37 | 36 | adantl |  | 
						
							| 38 | 37 | adantl |  | 
						
							| 39 | 16 32 38 | 3eqtrd |  |