| Step | Hyp | Ref | Expression | 
						
							| 1 |  | pm2mpval.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | pm2mpval.c |  |-  C = ( N Mat P ) | 
						
							| 3 |  | pm2mpval.b |  |-  B = ( Base ` C ) | 
						
							| 4 |  | pm2mpval.m |  |-  .* = ( .s ` Q ) | 
						
							| 5 |  | pm2mpval.e |  |-  .^ = ( .g ` ( mulGrp ` Q ) ) | 
						
							| 6 |  | pm2mpval.x |  |-  X = ( var1 ` A ) | 
						
							| 7 |  | pm2mpval.a |  |-  A = ( N Mat R ) | 
						
							| 8 |  | pm2mpval.q |  |-  Q = ( Poly1 ` A ) | 
						
							| 9 |  | pm2mpval.t |  |-  T = ( N pMatToMatPoly R ) | 
						
							| 10 | 1 2 3 4 5 6 7 8 9 | pm2mpval |  |-  ( ( N e. Fin /\ R e. V ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 11 | 10 | 3adant3 |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> T = ( m e. B |-> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) ) ) | 
						
							| 12 |  | oveq1 |  |-  ( m = M -> ( m decompPMat k ) = ( M decompPMat k ) ) | 
						
							| 13 | 12 | oveq1d |  |-  ( m = M -> ( ( m decompPMat k ) .* ( k .^ X ) ) = ( ( M decompPMat k ) .* ( k .^ X ) ) ) | 
						
							| 14 | 13 | mpteq2dv |  |-  ( m = M -> ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) = ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) | 
						
							| 15 | 14 | oveq2d |  |-  ( m = M -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 16 | 15 | adantl |  |-  ( ( ( N e. Fin /\ R e. V /\ M e. B ) /\ m = M ) -> ( Q gsum ( k e. NN0 |-> ( ( m decompPMat k ) .* ( k .^ X ) ) ) ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) | 
						
							| 17 |  | simp3 |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> M e. B ) | 
						
							| 18 |  | ovexd |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) e. _V ) | 
						
							| 19 | 11 16 17 18 | fvmptd |  |-  ( ( N e. Fin /\ R e. V /\ M e. B ) -> ( T ` M ) = ( Q gsum ( k e. NN0 |-> ( ( M decompPMat k ) .* ( k .^ X ) ) ) ) ) |