| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummonply1.p |
|- P = ( Poly1 ` R ) |
| 2 |
|
gsummonply1.b |
|- B = ( Base ` P ) |
| 3 |
|
gsummonply1.x |
|- X = ( var1 ` R ) |
| 4 |
|
gsummonply1.e |
|- .^ = ( .g ` ( mulGrp ` P ) ) |
| 5 |
|
gsummonply1.r |
|- ( ph -> R e. Ring ) |
| 6 |
|
gsummonply1.k |
|- K = ( Base ` R ) |
| 7 |
|
gsummonply1.m |
|- .* = ( .s ` P ) |
| 8 |
|
gsummonply1.0 |
|- .0. = ( 0g ` R ) |
| 9 |
|
gsummonply1.a |
|- ( ph -> A. k e. NN0 A e. K ) |
| 10 |
|
gsummonply1.f |
|- ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) |
| 11 |
|
gsummonply1.l |
|- ( ph -> L e. NN0 ) |
| 12 |
9
|
r19.21bi |
|- ( ( ph /\ k e. NN0 ) -> A e. K ) |
| 13 |
12
|
fmpttd |
|- ( ph -> ( k e. NN0 |-> A ) : NN0 --> K ) |
| 14 |
6
|
fvexi |
|- K e. _V |
| 15 |
14
|
a1i |
|- ( ph -> K e. _V ) |
| 16 |
|
nn0ex |
|- NN0 e. _V |
| 17 |
|
elmapg |
|- ( ( K e. _V /\ NN0 e. _V ) -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
| 18 |
15 16 17
|
sylancl |
|- ( ph -> ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) <-> ( k e. NN0 |-> A ) : NN0 --> K ) ) |
| 19 |
13 18
|
mpbird |
|- ( ph -> ( k e. NN0 |-> A ) e. ( K ^m NN0 ) ) |
| 20 |
8
|
fvexi |
|- .0. e. _V |
| 21 |
|
fsuppmapnn0ub |
|- ( ( ( k e. NN0 |-> A ) e. ( K ^m NN0 ) /\ .0. e. _V ) -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
| 22 |
19 20 21
|
sylancl |
|- ( ph -> ( ( k e. NN0 |-> A ) finSupp .0. -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) ) |
| 23 |
10 22
|
mpd |
|- ( ph -> E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) ) |
| 24 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> x e. NN0 ) |
| 25 |
9
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> A. k e. NN0 A e. K ) |
| 26 |
|
rspcsbela |
|- ( ( x e. NN0 /\ A. k e. NN0 A e. K ) -> [_ x / k ]_ A e. K ) |
| 27 |
24 25 26
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> [_ x / k ]_ A e. K ) |
| 28 |
|
eqid |
|- ( k e. NN0 |-> A ) = ( k e. NN0 |-> A ) |
| 29 |
28
|
fvmpts |
|- ( ( x e. NN0 /\ [_ x / k ]_ A e. K ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
| 30 |
24 27 29
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( k e. NN0 |-> A ) ` x ) = [_ x / k ]_ A ) |
| 31 |
30
|
eqeq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( ( k e. NN0 |-> A ) ` x ) = .0. <-> [_ x / k ]_ A = .0. ) ) |
| 32 |
31
|
imbi2d |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) <-> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 33 |
32
|
biimpd |
|- ( ( ( ph /\ s e. NN0 ) /\ x e. NN0 ) -> ( ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 34 |
33
|
ralimdva |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) ) |
| 35 |
|
eqid |
|- ( 0g ` P ) = ( 0g ` P ) |
| 36 |
1
|
ply1ring |
|- ( R e. Ring -> P e. Ring ) |
| 37 |
|
ringcmn |
|- ( P e. Ring -> P e. CMnd ) |
| 38 |
5 36 37
|
3syl |
|- ( ph -> P e. CMnd ) |
| 39 |
38
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> P e. CMnd ) |
| 40 |
5
|
3ad2ant1 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> R e. Ring ) |
| 41 |
|
simp3 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> A e. K ) |
| 42 |
|
simp2 |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> k e. NN0 ) |
| 43 |
|
eqid |
|- ( mulGrp ` P ) = ( mulGrp ` P ) |
| 44 |
6 1 3 7 43 4 2
|
ply1tmcl |
|- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( A .* ( k .^ X ) ) e. B ) |
| 45 |
40 41 42 44
|
syl3anc |
|- ( ( ph /\ k e. NN0 /\ A e. K ) -> ( A .* ( k .^ X ) ) e. B ) |
| 46 |
45
|
3expia |
|- ( ( ph /\ k e. NN0 ) -> ( A e. K -> ( A .* ( k .^ X ) ) e. B ) ) |
| 47 |
46
|
ralimdva |
|- ( ph -> ( A. k e. NN0 A e. K -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) ) |
| 48 |
9 47
|
mpd |
|- ( ph -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( A .* ( k .^ X ) ) e. B ) |
| 50 |
|
simplr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> s e. NN0 ) |
| 51 |
|
nfv |
|- F/ k s < x |
| 52 |
|
nfcsb1v |
|- F/_ k [_ x / k ]_ A |
| 53 |
52
|
nfeq1 |
|- F/ k [_ x / k ]_ A = .0. |
| 54 |
51 53
|
nfim |
|- F/ k ( s < x -> [_ x / k ]_ A = .0. ) |
| 55 |
|
nfv |
|- F/ x ( s < k -> [_ k / k ]_ A = .0. ) |
| 56 |
|
breq2 |
|- ( x = k -> ( s < x <-> s < k ) ) |
| 57 |
|
csbeq1 |
|- ( x = k -> [_ x / k ]_ A = [_ k / k ]_ A ) |
| 58 |
57
|
eqeq1d |
|- ( x = k -> ( [_ x / k ]_ A = .0. <-> [_ k / k ]_ A = .0. ) ) |
| 59 |
56 58
|
imbi12d |
|- ( x = k -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < k -> [_ k / k ]_ A = .0. ) ) ) |
| 60 |
54 55 59
|
cbvralw |
|- ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) <-> A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) ) |
| 61 |
|
csbid |
|- [_ k / k ]_ A = A |
| 62 |
61
|
eqeq1i |
|- ( [_ k / k ]_ A = .0. <-> A = .0. ) |
| 63 |
|
oveq1 |
|- ( A = .0. -> ( A .* ( k .^ X ) ) = ( .0. .* ( k .^ X ) ) ) |
| 64 |
1
|
ply1sca |
|- ( R e. Ring -> R = ( Scalar ` P ) ) |
| 65 |
5 64
|
syl |
|- ( ph -> R = ( Scalar ` P ) ) |
| 66 |
65
|
fveq2d |
|- ( ph -> ( 0g ` R ) = ( 0g ` ( Scalar ` P ) ) ) |
| 67 |
8 66
|
eqtrid |
|- ( ph -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 68 |
67
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> .0. = ( 0g ` ( Scalar ` P ) ) ) |
| 69 |
68
|
oveq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) ) |
| 70 |
1
|
ply1lmod |
|- ( R e. Ring -> P e. LMod ) |
| 71 |
5 70
|
syl |
|- ( ph -> P e. LMod ) |
| 72 |
71
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> P e. LMod ) |
| 73 |
|
eqid |
|- ( Base ` P ) = ( Base ` P ) |
| 74 |
43 73
|
mgpbas |
|- ( Base ` P ) = ( Base ` ( mulGrp ` P ) ) |
| 75 |
43
|
ringmgp |
|- ( P e. Ring -> ( mulGrp ` P ) e. Mnd ) |
| 76 |
5 36 75
|
3syl |
|- ( ph -> ( mulGrp ` P ) e. Mnd ) |
| 77 |
76
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( mulGrp ` P ) e. Mnd ) |
| 78 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> k e. NN0 ) |
| 79 |
3 1 73
|
vr1cl |
|- ( R e. Ring -> X e. ( Base ` P ) ) |
| 80 |
5 79
|
syl |
|- ( ph -> X e. ( Base ` P ) ) |
| 81 |
80
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> X e. ( Base ` P ) ) |
| 82 |
74 4 77 78 81
|
mulgnn0cld |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( k .^ X ) e. ( Base ` P ) ) |
| 83 |
|
eqid |
|- ( Scalar ` P ) = ( Scalar ` P ) |
| 84 |
|
eqid |
|- ( 0g ` ( Scalar ` P ) ) = ( 0g ` ( Scalar ` P ) ) |
| 85 |
73 83 7 84 35
|
lmod0vs |
|- ( ( P e. LMod /\ ( k .^ X ) e. ( Base ` P ) ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 86 |
72 82 85
|
syl2anc |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( 0g ` ( Scalar ` P ) ) .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 87 |
69 86
|
eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( .0. .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 88 |
63 87
|
sylan9eqr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) /\ A = .0. ) -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) |
| 89 |
88
|
ex |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 90 |
62 89
|
biimtrid |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( [_ k / k ]_ A = .0. -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 91 |
90
|
imim2d |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ( s < k -> [_ k / k ]_ A = .0. ) -> ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 92 |
91
|
ralimdva |
|- ( ( ph /\ s e. NN0 ) -> ( A. k e. NN0 ( s < k -> [_ k / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 93 |
60 92
|
biimtrid |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) ) |
| 94 |
93
|
imp |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. NN0 ( s < k -> ( A .* ( k .^ X ) ) = ( 0g ` P ) ) ) |
| 95 |
2 35 39 49 50 94
|
gsummptnn0fz |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) |
| 96 |
95
|
fveq2d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) = ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ) |
| 97 |
96
|
fveq1d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) ) |
| 98 |
5
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> R e. Ring ) |
| 99 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> L e. NN0 ) |
| 100 |
|
elfznn0 |
|- ( k e. ( 0 ... s ) -> k e. NN0 ) |
| 101 |
|
simpll |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ph ) |
| 102 |
12
|
adantlr |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> A e. K ) |
| 103 |
101 78 102
|
3jca |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. NN0 ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
| 104 |
100 103
|
sylan2 |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( ph /\ k e. NN0 /\ A e. K ) ) |
| 105 |
104 45
|
syl |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> ( A .* ( k .^ X ) ) e. B ) |
| 106 |
105
|
ralrimiva |
|- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
| 107 |
106
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> A. k e. ( 0 ... s ) ( A .* ( k .^ X ) ) e. B ) |
| 108 |
|
fzfid |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( 0 ... s ) e. Fin ) |
| 109 |
1 2 98 99 107 108
|
coe1fzgsumd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. ( 0 ... s ) |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) ) |
| 110 |
|
nfv |
|- F/ k ( ph /\ s e. NN0 ) |
| 111 |
|
nfcv |
|- F/_ k NN0 |
| 112 |
111 54
|
nfralw |
|- F/ k A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) |
| 113 |
110 112
|
nfan |
|- F/ k ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) |
| 114 |
5
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> R e. Ring ) |
| 115 |
12
|
expcom |
|- ( k e. NN0 -> ( ph -> A e. K ) ) |
| 116 |
115 100
|
syl11 |
|- ( ph -> ( k e. ( 0 ... s ) -> A e. K ) ) |
| 117 |
116
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) -> A e. K ) ) |
| 118 |
117
|
imp |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> A e. K ) |
| 119 |
100
|
adantl |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> k e. NN0 ) |
| 120 |
8 6 1 3 7 43 4
|
coe1tm |
|- ( ( R e. Ring /\ A e. K /\ k e. NN0 ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
| 121 |
114 118 119 120
|
syl3anc |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( coe1 ` ( A .* ( k .^ X ) ) ) = ( n e. NN0 |-> if ( n = k , A , .0. ) ) ) |
| 122 |
|
eqeq1 |
|- ( n = L -> ( n = k <-> L = k ) ) |
| 123 |
122
|
ifbid |
|- ( n = L -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
| 124 |
123
|
adantl |
|- ( ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) /\ n = L ) -> if ( n = k , A , .0. ) = if ( L = k , A , .0. ) ) |
| 125 |
11
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> L e. NN0 ) |
| 126 |
6 8
|
ring0cl |
|- ( R e. Ring -> .0. e. K ) |
| 127 |
5 126
|
syl |
|- ( ph -> .0. e. K ) |
| 128 |
127
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> .0. e. K ) |
| 129 |
118 128
|
ifcld |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) e. K ) |
| 130 |
121 124 125 129
|
fvmptd |
|- ( ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) /\ k e. ( 0 ... s ) ) -> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) = if ( L = k , A , .0. ) ) |
| 131 |
113 130
|
mpteq2da |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) = ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) |
| 132 |
131
|
oveq2d |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) ) |
| 133 |
|
breq2 |
|- ( x = L -> ( s < x <-> s < L ) ) |
| 134 |
|
csbeq1 |
|- ( x = L -> [_ x / k ]_ A = [_ L / k ]_ A ) |
| 135 |
134
|
eqeq1d |
|- ( x = L -> ( [_ x / k ]_ A = .0. <-> [_ L / k ]_ A = .0. ) ) |
| 136 |
133 135
|
imbi12d |
|- ( x = L -> ( ( s < x -> [_ x / k ]_ A = .0. ) <-> ( s < L -> [_ L / k ]_ A = .0. ) ) ) |
| 137 |
136
|
rspcva |
|- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> [_ L / k ]_ A = .0. ) ) |
| 138 |
|
nfv |
|- F/ k ( ph /\ ( s e. NN0 /\ s < L ) ) |
| 139 |
|
nfcsb1v |
|- F/_ k [_ L / k ]_ A |
| 140 |
139
|
nfeq1 |
|- F/ k [_ L / k ]_ A = .0. |
| 141 |
138 140
|
nfan |
|- F/ k ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) |
| 142 |
|
elfz2nn0 |
|- ( k e. ( 0 ... s ) <-> ( k e. NN0 /\ s e. NN0 /\ k <_ s ) ) |
| 143 |
|
nn0re |
|- ( k e. NN0 -> k e. RR ) |
| 144 |
143
|
ad2antrr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> k e. RR ) |
| 145 |
|
nn0re |
|- ( s e. NN0 -> s e. RR ) |
| 146 |
145
|
adantl |
|- ( ( k e. NN0 /\ s e. NN0 ) -> s e. RR ) |
| 147 |
146
|
adantr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> s e. RR ) |
| 148 |
|
nn0re |
|- ( L e. NN0 -> L e. RR ) |
| 149 |
148
|
adantl |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> L e. RR ) |
| 150 |
|
lelttr |
|- ( ( k e. RR /\ s e. RR /\ L e. RR ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
| 151 |
144 147 149 150
|
syl3anc |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> k < L ) ) |
| 152 |
|
animorr |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L < k \/ k < L ) ) |
| 153 |
|
df-ne |
|- ( L =/= k <-> -. L = k ) |
| 154 |
143
|
adantr |
|- ( ( k e. NN0 /\ s e. NN0 ) -> k e. RR ) |
| 155 |
|
lttri2 |
|- ( ( L e. RR /\ k e. RR ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
| 156 |
148 154 155
|
syl2anr |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
| 157 |
156
|
adantr |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( L =/= k <-> ( L < k \/ k < L ) ) ) |
| 158 |
153 157
|
bitr3id |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> ( -. L = k <-> ( L < k \/ k < L ) ) ) |
| 159 |
152 158
|
mpbird |
|- ( ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) /\ k < L ) -> -. L = k ) |
| 160 |
159
|
ex |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( k < L -> -. L = k ) ) |
| 161 |
151 160
|
syld |
|- ( ( ( k e. NN0 /\ s e. NN0 ) /\ L e. NN0 ) -> ( ( k <_ s /\ s < L ) -> -. L = k ) ) |
| 162 |
161
|
exp4b |
|- ( ( k e. NN0 /\ s e. NN0 ) -> ( L e. NN0 -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
| 163 |
162
|
expimpd |
|- ( k e. NN0 -> ( ( s e. NN0 /\ L e. NN0 ) -> ( k <_ s -> ( s < L -> -. L = k ) ) ) ) |
| 164 |
163
|
com23 |
|- ( k e. NN0 -> ( k <_ s -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) ) |
| 165 |
164
|
imp |
|- ( ( k e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 166 |
165
|
3adant2 |
|- ( ( k e. NN0 /\ s e. NN0 /\ k <_ s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 167 |
142 166
|
sylbi |
|- ( k e. ( 0 ... s ) -> ( ( s e. NN0 /\ L e. NN0 ) -> ( s < L -> -. L = k ) ) ) |
| 168 |
167
|
expd |
|- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( L e. NN0 -> ( s < L -> -. L = k ) ) ) ) |
| 169 |
11 168
|
syl7 |
|- ( k e. ( 0 ... s ) -> ( s e. NN0 -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
| 170 |
169
|
com12 |
|- ( s e. NN0 -> ( k e. ( 0 ... s ) -> ( ph -> ( s < L -> -. L = k ) ) ) ) |
| 171 |
170
|
com24 |
|- ( s e. NN0 -> ( s < L -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) ) |
| 172 |
171
|
imp |
|- ( ( s e. NN0 /\ s < L ) -> ( ph -> ( k e. ( 0 ... s ) -> -. L = k ) ) ) |
| 173 |
172
|
impcom |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
| 174 |
173
|
adantr |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) -> -. L = k ) ) |
| 175 |
174
|
imp |
|- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> -. L = k ) |
| 176 |
175
|
iffalsed |
|- ( ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) /\ k e. ( 0 ... s ) ) -> if ( L = k , A , .0. ) = .0. ) |
| 177 |
141 176
|
mpteq2da |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> .0. ) ) |
| 178 |
177
|
oveq2d |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) ) |
| 179 |
|
ringmnd |
|- ( R e. Ring -> R e. Mnd ) |
| 180 |
5 179
|
syl |
|- ( ph -> R e. Mnd ) |
| 181 |
180
|
adantr |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> R e. Mnd ) |
| 182 |
|
ovex |
|- ( 0 ... s ) e. _V |
| 183 |
8
|
gsumz |
|- ( ( R e. Mnd /\ ( 0 ... s ) e. _V ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 184 |
181 182 183
|
sylancl |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 185 |
184
|
adantr |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> .0. ) ) = .0. ) |
| 186 |
|
id |
|- ( [_ L / k ]_ A = .0. -> [_ L / k ]_ A = .0. ) |
| 187 |
186
|
eqcomd |
|- ( [_ L / k ]_ A = .0. -> .0. = [_ L / k ]_ A ) |
| 188 |
187
|
adantl |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> .0. = [_ L / k ]_ A ) |
| 189 |
178 185 188
|
3eqtrd |
|- ( ( ( ph /\ ( s e. NN0 /\ s < L ) ) /\ [_ L / k ]_ A = .0. ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 190 |
189
|
ex |
|- ( ( ph /\ ( s e. NN0 /\ s < L ) ) -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 191 |
190
|
expr |
|- ( ( ph /\ s e. NN0 ) -> ( s < L -> ( [_ L / k ]_ A = .0. -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
| 192 |
191
|
a2d |
|- ( ( ph /\ s e. NN0 ) -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) |
| 193 |
192
|
ex |
|- ( ph -> ( s e. NN0 -> ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 194 |
193
|
com13 |
|- ( ( s < L -> [_ L / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 195 |
137 194
|
syl |
|- ( ( L e. NN0 /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 196 |
195
|
ex |
|- ( L e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s e. NN0 -> ( ph -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
| 197 |
196
|
com24 |
|- ( L e. NN0 -> ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) ) |
| 198 |
11 197
|
mpcom |
|- ( ph -> ( s e. NN0 -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) ) ) |
| 199 |
198
|
imp31 |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( s < L -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 200 |
199
|
com12 |
|- ( s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 201 |
|
pm3.2 |
|- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
| 202 |
201
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( -. s < L -> ( ( ph /\ s e. NN0 ) /\ -. s < L ) ) ) |
| 203 |
180
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> R e. Mnd ) |
| 204 |
182
|
a1i |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( 0 ... s ) e. _V ) |
| 205 |
11
|
nn0red |
|- ( ph -> L e. RR ) |
| 206 |
|
lenlt |
|- ( ( L e. RR /\ s e. RR ) -> ( L <_ s <-> -. s < L ) ) |
| 207 |
205 145 206
|
syl2an |
|- ( ( ph /\ s e. NN0 ) -> ( L <_ s <-> -. s < L ) ) |
| 208 |
11
|
ad2antrr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. NN0 ) |
| 209 |
|
simplr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> s e. NN0 ) |
| 210 |
|
simpr |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L <_ s ) |
| 211 |
|
elfz2nn0 |
|- ( L e. ( 0 ... s ) <-> ( L e. NN0 /\ s e. NN0 /\ L <_ s ) ) |
| 212 |
208 209 210 211
|
syl3anbrc |
|- ( ( ( ph /\ s e. NN0 ) /\ L <_ s ) -> L e. ( 0 ... s ) ) |
| 213 |
212
|
ex |
|- ( ( ph /\ s e. NN0 ) -> ( L <_ s -> L e. ( 0 ... s ) ) ) |
| 214 |
207 213
|
sylbird |
|- ( ( ph /\ s e. NN0 ) -> ( -. s < L -> L e. ( 0 ... s ) ) ) |
| 215 |
214
|
imp |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> L e. ( 0 ... s ) ) |
| 216 |
|
eqcom |
|- ( L = k <-> k = L ) |
| 217 |
|
ifbi |
|- ( ( L = k <-> k = L ) -> if ( L = k , A , .0. ) = if ( k = L , A , .0. ) ) |
| 218 |
216 217
|
ax-mp |
|- if ( L = k , A , .0. ) = if ( k = L , A , .0. ) |
| 219 |
218
|
mpteq2i |
|- ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) = ( k e. ( 0 ... s ) |-> if ( k = L , A , .0. ) ) |
| 220 |
12 6
|
eleqtrdi |
|- ( ( ph /\ k e. NN0 ) -> A e. ( Base ` R ) ) |
| 221 |
220
|
ex |
|- ( ph -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
| 222 |
221
|
adantr |
|- ( ( ph /\ s e. NN0 ) -> ( k e. NN0 -> A e. ( Base ` R ) ) ) |
| 223 |
222 100
|
impel |
|- ( ( ( ph /\ s e. NN0 ) /\ k e. ( 0 ... s ) ) -> A e. ( Base ` R ) ) |
| 224 |
223
|
ralrimiva |
|- ( ( ph /\ s e. NN0 ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
| 225 |
224
|
adantr |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> A. k e. ( 0 ... s ) A e. ( Base ` R ) ) |
| 226 |
8 203 204 215 219 225
|
gsummpt1n0 |
|- ( ( ( ph /\ s e. NN0 ) /\ -. s < L ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 227 |
202 226
|
syl6com |
|- ( -. s < L -> ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) ) |
| 228 |
200 227
|
pm2.61i |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> if ( L = k , A , .0. ) ) ) = [_ L / k ]_ A ) |
| 229 |
132 228
|
eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( R gsum ( k e. ( 0 ... s ) |-> ( ( coe1 ` ( A .* ( k .^ X ) ) ) ` L ) ) ) = [_ L / k ]_ A ) |
| 230 |
97 109 229
|
3eqtrd |
|- ( ( ( ph /\ s e. NN0 ) /\ A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |
| 231 |
230
|
ex |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> [_ x / k ]_ A = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 232 |
34 231
|
syld |
|- ( ( ph /\ s e. NN0 ) -> ( A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 233 |
232
|
rexlimdva |
|- ( ph -> ( E. s e. NN0 A. x e. NN0 ( s < x -> ( ( k e. NN0 |-> A ) ` x ) = .0. ) -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) ) |
| 234 |
23 233
|
mpd |
|- ( ph -> ( ( coe1 ` ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) ` L ) = [_ L / k ]_ A ) |