| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsummonply1.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
gsummonply1.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
gsummonply1.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 4 |
|
gsummonply1.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 5 |
|
gsummonply1.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 6 |
|
gsummonply1.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 7 |
|
gsummonply1.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
| 8 |
|
gsummonply1.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 9 |
|
gsummonply1.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) |
| 10 |
|
gsummonply1.f |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) |
| 11 |
|
gsummonply1.l |
⊢ ( 𝜑 → 𝐿 ∈ ℕ0 ) |
| 12 |
9
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
| 13 |
12
|
fmpttd |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) |
| 14 |
6
|
fvexi |
⊢ 𝐾 ∈ V |
| 15 |
14
|
a1i |
⊢ ( 𝜑 → 𝐾 ∈ V ) |
| 16 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 17 |
|
elmapg |
⊢ ( ( 𝐾 ∈ V ∧ ℕ0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) ) |
| 18 |
15 16 17
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ↔ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) : ℕ0 ⟶ 𝐾 ) ) |
| 19 |
13 18
|
mpbird |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ) |
| 20 |
8
|
fvexi |
⊢ 0 ∈ V |
| 21 |
|
fsuppmapnn0ub |
⊢ ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ∈ ( 𝐾 ↑m ℕ0 ) ∧ 0 ∈ V ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) ) |
| 22 |
19 20 21
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) ) |
| 23 |
10 22
|
mpd |
⊢ ( 𝜑 → ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ) |
| 24 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → 𝑥 ∈ ℕ0 ) |
| 25 |
9
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) |
| 26 |
|
rspcsbela |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 27 |
24 25 26
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 28 |
|
eqid |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) = ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) |
| 29 |
28
|
fvmpts |
⊢ ( ( 𝑥 ∈ ℕ0 ∧ ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ) |
| 30 |
24 27 29
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = ⦋ 𝑥 / 𝑘 ⦌ 𝐴 ) |
| 31 |
30
|
eqeq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ↔ ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 32 |
31
|
imbi2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) ↔ ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 33 |
32
|
biimpd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑥 ∈ ℕ0 ) → ( ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 34 |
33
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 35 |
|
eqid |
⊢ ( 0g ‘ 𝑃 ) = ( 0g ‘ 𝑃 ) |
| 36 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 37 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 38 |
5 36 37
|
3syl |
⊢ ( 𝜑 → 𝑃 ∈ CMnd ) |
| 39 |
38
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑃 ∈ CMnd ) |
| 40 |
5
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑅 ∈ Ring ) |
| 41 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝐴 ∈ 𝐾 ) |
| 42 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → 𝑘 ∈ ℕ0 ) |
| 43 |
|
eqid |
⊢ ( mulGrp ‘ 𝑃 ) = ( mulGrp ‘ 𝑃 ) |
| 44 |
6 1 3 7 43 4 2
|
ply1tmcl |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 45 |
40 41 42 44
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 46 |
45
|
3expia |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ∈ 𝐾 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) ) |
| 47 |
46
|
ralimdva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) ) |
| 48 |
9 47
|
mpd |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 49 |
48
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 50 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑠 ∈ ℕ0 ) |
| 51 |
|
nfv |
⊢ Ⅎ 𝑘 𝑠 < 𝑥 |
| 52 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐴 |
| 53 |
52
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 |
| 54 |
51 53
|
nfim |
⊢ Ⅎ 𝑘 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) |
| 55 |
|
nfv |
⊢ Ⅎ 𝑥 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) |
| 56 |
|
breq2 |
⊢ ( 𝑥 = 𝑘 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝑘 ) ) |
| 57 |
|
csbeq1 |
⊢ ( 𝑥 = 𝑘 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = ⦋ 𝑘 / 𝑘 ⦌ 𝐴 ) |
| 58 |
57
|
eqeq1d |
⊢ ( 𝑥 = 𝑘 → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ↔ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 59 |
56 58
|
imbi12d |
⊢ ( 𝑥 = 𝑘 → ( ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 60 |
54 55 59
|
cbvralw |
⊢ ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 61 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 𝐴 |
| 62 |
61
|
eqeq1i |
⊢ ( ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ↔ 𝐴 = 0 ) |
| 63 |
|
oveq1 |
⊢ ( 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 64 |
1
|
ply1sca |
⊢ ( 𝑅 ∈ Ring → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 65 |
5 64
|
syl |
⊢ ( 𝜑 → 𝑅 = ( Scalar ‘ 𝑃 ) ) |
| 66 |
65
|
fveq2d |
⊢ ( 𝜑 → ( 0g ‘ 𝑅 ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 67 |
8 66
|
eqtrid |
⊢ ( 𝜑 → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 68 |
67
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 0 = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ) |
| 69 |
68
|
oveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) ) |
| 70 |
1
|
ply1lmod |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ LMod ) |
| 71 |
5 70
|
syl |
⊢ ( 𝜑 → 𝑃 ∈ LMod ) |
| 72 |
71
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑃 ∈ LMod ) |
| 73 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 74 |
43 73
|
mgpbas |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ ( mulGrp ‘ 𝑃 ) ) |
| 75 |
43
|
ringmgp |
⊢ ( 𝑃 ∈ Ring → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 76 |
5 36 75
|
3syl |
⊢ ( 𝜑 → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 77 |
76
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( mulGrp ‘ 𝑃 ) ∈ Mnd ) |
| 78 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 79 |
3 1 73
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 80 |
5 79
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 81 |
80
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 82 |
74 4 77 78 81
|
mulgnn0cld |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) |
| 83 |
|
eqid |
⊢ ( Scalar ‘ 𝑃 ) = ( Scalar ‘ 𝑃 ) |
| 84 |
|
eqid |
⊢ ( 0g ‘ ( Scalar ‘ 𝑃 ) ) = ( 0g ‘ ( Scalar ‘ 𝑃 ) ) |
| 85 |
73 83 7 84 35
|
lmod0vs |
⊢ ( ( 𝑃 ∈ LMod ∧ ( 𝑘 ↑ 𝑋 ) ∈ ( Base ‘ 𝑃 ) ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 86 |
72 82 85
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 0g ‘ ( Scalar ‘ 𝑃 ) ) ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 87 |
69 86
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 0 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 88 |
63 87
|
sylan9eqr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) ∧ 𝐴 = 0 ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) |
| 89 |
88
|
ex |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 90 |
62 89
|
biimtrid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 91 |
90
|
imim2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 92 |
91
|
ralimdva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 93 |
60 92
|
biimtrid |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) ) |
| 94 |
93
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ℕ0 ( 𝑠 < 𝑘 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( 0g ‘ 𝑃 ) ) ) |
| 95 |
2 35 39 49 50 94
|
gsummptnn0fz |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 96 |
95
|
fveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 97 |
96
|
fveq1d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) ) |
| 98 |
5
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝑅 ∈ Ring ) |
| 99 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → 𝐿 ∈ ℕ0 ) |
| 100 |
|
elfznn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝑘 ∈ ℕ0 ) |
| 101 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝜑 ) |
| 102 |
12
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ 𝐾 ) |
| 103 |
101 78 102
|
3jca |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ) |
| 104 |
100 103
|
sylan2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝜑 ∧ 𝑘 ∈ ℕ0 ∧ 𝐴 ∈ 𝐾 ) ) |
| 105 |
104 45
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 106 |
105
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ∈ 𝐵 ) |
| 108 |
|
fzfid |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 0 ... 𝑠 ) ∈ Fin ) |
| 109 |
1 2 98 99 107 108
|
coe1fzgsumd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) ) |
| 110 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑘 ℕ0 |
| 112 |
111 54
|
nfralw |
⊢ Ⅎ 𝑘 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) |
| 113 |
110 112
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 114 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑅 ∈ Ring ) |
| 115 |
12
|
expcom |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝜑 → 𝐴 ∈ 𝐾 ) ) |
| 116 |
115 100
|
syl11 |
⊢ ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝐴 ∈ 𝐾 ) ) |
| 117 |
116
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → 𝐴 ∈ 𝐾 ) ) |
| 118 |
117
|
imp |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐴 ∈ 𝐾 ) |
| 119 |
100
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝑘 ∈ ℕ0 ) |
| 120 |
8 6 1 3 7 43 4
|
coe1tm |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐴 ∈ 𝐾 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑘 , 𝐴 , 0 ) ) ) |
| 121 |
114 118 119 120
|
syl3anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑛 ∈ ℕ0 ↦ if ( 𝑛 = 𝑘 , 𝐴 , 0 ) ) ) |
| 122 |
|
eqeq1 |
⊢ ( 𝑛 = 𝐿 → ( 𝑛 = 𝑘 ↔ 𝐿 = 𝑘 ) ) |
| 123 |
122
|
ifbid |
⊢ ( 𝑛 = 𝐿 → if ( 𝑛 = 𝑘 , 𝐴 , 0 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 124 |
123
|
adantl |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) ∧ 𝑛 = 𝐿 ) → if ( 𝑛 = 𝑘 , 𝐴 , 0 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 125 |
11
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐿 ∈ ℕ0 ) |
| 126 |
6 8
|
ring0cl |
⊢ ( 𝑅 ∈ Ring → 0 ∈ 𝐾 ) |
| 127 |
5 126
|
syl |
⊢ ( 𝜑 → 0 ∈ 𝐾 ) |
| 128 |
127
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 0 ∈ 𝐾 ) |
| 129 |
118 128
|
ifcld |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ∈ 𝐾 ) |
| 130 |
121 124 125 129
|
fvmptd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) = if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) |
| 131 |
113 130
|
mpteq2da |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) |
| 132 |
131
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) ) |
| 133 |
|
breq2 |
⊢ ( 𝑥 = 𝐿 → ( 𝑠 < 𝑥 ↔ 𝑠 < 𝐿 ) ) |
| 134 |
|
csbeq1 |
⊢ ( 𝑥 = 𝐿 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 135 |
134
|
eqeq1d |
⊢ ( 𝑥 = 𝐿 → ( ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ↔ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 136 |
133 135
|
imbi12d |
⊢ ( 𝑥 = 𝐿 → ( ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ↔ ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) ) |
| 137 |
136
|
rspcva |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ) |
| 138 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) |
| 139 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝐿 / 𝑘 ⦌ 𝐴 |
| 140 |
139
|
nfeq1 |
⊢ Ⅎ 𝑘 ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 |
| 141 |
138 140
|
nfan |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) |
| 142 |
|
elfz2nn0 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↔ ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) ) |
| 143 |
|
nn0re |
⊢ ( 𝑘 ∈ ℕ0 → 𝑘 ∈ ℝ ) |
| 144 |
143
|
ad2antrr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 145 |
|
nn0re |
⊢ ( 𝑠 ∈ ℕ0 → 𝑠 ∈ ℝ ) |
| 146 |
145
|
adantl |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → 𝑠 ∈ ℝ ) |
| 147 |
146
|
adantr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝑠 ∈ ℝ ) |
| 148 |
|
nn0re |
⊢ ( 𝐿 ∈ ℕ0 → 𝐿 ∈ ℝ ) |
| 149 |
148
|
adantl |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → 𝐿 ∈ ℝ ) |
| 150 |
|
lelttr |
⊢ ( ( 𝑘 ∈ ℝ ∧ 𝑠 ∈ ℝ ∧ 𝐿 ∈ ℝ ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → 𝑘 < 𝐿 ) ) |
| 151 |
144 147 149 150
|
syl3anc |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → 𝑘 < 𝐿 ) ) |
| 152 |
|
animorr |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) |
| 153 |
|
df-ne |
⊢ ( 𝐿 ≠ 𝑘 ↔ ¬ 𝐿 = 𝑘 ) |
| 154 |
143
|
adantr |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → 𝑘 ∈ ℝ ) |
| 155 |
|
lttri2 |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑘 ∈ ℝ ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 156 |
148 154 155
|
syl2anr |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 157 |
156
|
adantr |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( 𝐿 ≠ 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 158 |
153 157
|
bitr3id |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ( ¬ 𝐿 = 𝑘 ↔ ( 𝐿 < 𝑘 ∨ 𝑘 < 𝐿 ) ) ) |
| 159 |
152 158
|
mpbird |
⊢ ( ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) ∧ 𝑘 < 𝐿 ) → ¬ 𝐿 = 𝑘 ) |
| 160 |
159
|
ex |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( 𝑘 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) |
| 161 |
151 160
|
syld |
⊢ ( ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ∈ ℕ0 ) → ( ( 𝑘 ≤ 𝑠 ∧ 𝑠 < 𝐿 ) → ¬ 𝐿 = 𝑘 ) ) |
| 162 |
161
|
exp4b |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 163 |
162
|
expimpd |
⊢ ( 𝑘 ∈ ℕ0 → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑘 ≤ 𝑠 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 164 |
163
|
com23 |
⊢ ( 𝑘 ∈ ℕ0 → ( 𝑘 ≤ 𝑠 → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 165 |
164
|
imp |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 166 |
165
|
3adant2 |
⊢ ( ( 𝑘 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝑘 ≤ 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 167 |
142 166
|
sylbi |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( ( 𝑠 ∈ ℕ0 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) |
| 168 |
167
|
expd |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝑠 ∈ ℕ0 → ( 𝐿 ∈ ℕ0 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 169 |
11 168
|
syl7 |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 170 |
169
|
com12 |
⊢ ( 𝑠 ∈ ℕ0 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ( 𝜑 → ( 𝑠 < 𝐿 → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 171 |
170
|
com24 |
⊢ ( 𝑠 ∈ ℕ0 → ( 𝑠 < 𝐿 → ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) ) ) |
| 172 |
171
|
imp |
⊢ ( ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) → ( 𝜑 → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) ) |
| 173 |
172
|
impcom |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) |
| 174 |
173
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) → ¬ 𝐿 = 𝑘 ) ) |
| 175 |
174
|
imp |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → ¬ 𝐿 = 𝑘 ) |
| 176 |
175
|
iffalsed |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = 0 ) |
| 177 |
141 176
|
mpteq2da |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) |
| 178 |
177
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) ) |
| 179 |
|
ringmnd |
⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Mnd ) |
| 180 |
5 179
|
syl |
⊢ ( 𝜑 → 𝑅 ∈ Mnd ) |
| 181 |
180
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → 𝑅 ∈ Mnd ) |
| 182 |
|
ovex |
⊢ ( 0 ... 𝑠 ) ∈ V |
| 183 |
8
|
gsumz |
⊢ ( ( 𝑅 ∈ Mnd ∧ ( 0 ... 𝑠 ) ∈ V ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 184 |
181 182 183
|
sylancl |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 185 |
184
|
adantr |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ 0 ) ) = 0 ) |
| 186 |
|
id |
⊢ ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) |
| 187 |
186
|
eqcomd |
⊢ ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → 0 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 188 |
187
|
adantl |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → 0 = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 189 |
178 185 188
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) ∧ ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 190 |
189
|
ex |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℕ0 ∧ 𝑠 < 𝐿 ) ) → ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 191 |
190
|
expr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑠 < 𝐿 → ( ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) |
| 192 |
191
|
a2d |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) |
| 193 |
192
|
ex |
⊢ ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 194 |
193
|
com13 |
⊢ ( ( 𝑠 < 𝐿 → ⦋ 𝐿 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 195 |
137 194
|
syl |
⊢ ( ( 𝐿 ∈ ℕ0 ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 196 |
195
|
ex |
⊢ ( 𝐿 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 ∈ ℕ0 → ( 𝜑 → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) ) |
| 197 |
196
|
com24 |
⊢ ( 𝐿 ∈ ℕ0 → ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) ) |
| 198 |
11 197
|
mpcom |
⊢ ( 𝜑 → ( 𝑠 ∈ ℕ0 → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) ) ) |
| 199 |
198
|
imp31 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑠 < 𝐿 → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 200 |
199
|
com12 |
⊢ ( 𝑠 < 𝐿 → ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 201 |
|
pm3.2 |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 < 𝐿 → ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) ) ) |
| 202 |
201
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ¬ 𝑠 < 𝐿 → ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) ) ) |
| 203 |
180
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → 𝑅 ∈ Mnd ) |
| 204 |
182
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ( 0 ... 𝑠 ) ∈ V ) |
| 205 |
11
|
nn0red |
⊢ ( 𝜑 → 𝐿 ∈ ℝ ) |
| 206 |
|
lenlt |
⊢ ( ( 𝐿 ∈ ℝ ∧ 𝑠 ∈ ℝ ) → ( 𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿 ) ) |
| 207 |
205 145 206
|
syl2an |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ≤ 𝑠 ↔ ¬ 𝑠 < 𝐿 ) ) |
| 208 |
11
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ∈ ℕ0 ) |
| 209 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝑠 ∈ ℕ0 ) |
| 210 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ≤ 𝑠 ) |
| 211 |
|
elfz2nn0 |
⊢ ( 𝐿 ∈ ( 0 ... 𝑠 ) ↔ ( 𝐿 ∈ ℕ0 ∧ 𝑠 ∈ ℕ0 ∧ 𝐿 ≤ 𝑠 ) ) |
| 212 |
208 209 210 211
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝐿 ≤ 𝑠 ) → 𝐿 ∈ ( 0 ... 𝑠 ) ) |
| 213 |
212
|
ex |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝐿 ≤ 𝑠 → 𝐿 ∈ ( 0 ... 𝑠 ) ) ) |
| 214 |
207 213
|
sylbird |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ¬ 𝑠 < 𝐿 → 𝐿 ∈ ( 0 ... 𝑠 ) ) ) |
| 215 |
214
|
imp |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → 𝐿 ∈ ( 0 ... 𝑠 ) ) |
| 216 |
|
eqcom |
⊢ ( 𝐿 = 𝑘 ↔ 𝑘 = 𝐿 ) |
| 217 |
|
ifbi |
⊢ ( ( 𝐿 = 𝑘 ↔ 𝑘 = 𝐿 ) → if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = if ( 𝑘 = 𝐿 , 𝐴 , 0 ) ) |
| 218 |
216 217
|
ax-mp |
⊢ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) = if ( 𝑘 = 𝐿 , 𝐴 , 0 ) |
| 219 |
218
|
mpteq2i |
⊢ ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) = ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝑘 = 𝐿 , 𝐴 , 0 ) ) |
| 220 |
12 6
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 221 |
220
|
ex |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) ) |
| 222 |
221
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 → 𝐴 ∈ ( Base ‘ 𝑅 ) ) ) |
| 223 |
222 100
|
impel |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ 𝑘 ∈ ( 0 ... 𝑠 ) ) → 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 224 |
223
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 225 |
224
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ∀ 𝑘 ∈ ( 0 ... 𝑠 ) 𝐴 ∈ ( Base ‘ 𝑅 ) ) |
| 226 |
8 203 204 215 219 225
|
gsummpt1n0 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ¬ 𝑠 < 𝐿 ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 227 |
202 226
|
syl6com |
⊢ ( ¬ 𝑠 < 𝐿 → ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 228 |
200 227
|
pm2.61i |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ if ( 𝐿 = 𝑘 , 𝐴 , 0 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 229 |
132 228
|
eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( 𝑅 Σg ( 𝑘 ∈ ( 0 ... 𝑠 ) ↦ ( ( coe1 ‘ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ‘ 𝐿 ) ) ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 230 |
97 109 229
|
3eqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) ∧ ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |
| 231 |
230
|
ex |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ⦋ 𝑥 / 𝑘 ⦌ 𝐴 = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 232 |
34 231
|
syld |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℕ0 ) → ( ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 233 |
232
|
rexlimdva |
⊢ ( 𝜑 → ( ∃ 𝑠 ∈ ℕ0 ∀ 𝑥 ∈ ℕ0 ( 𝑠 < 𝑥 → ( ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) ‘ 𝑥 ) = 0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) ) |
| 234 |
23 233
|
mpd |
⊢ ( 𝜑 → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) ‘ 𝐿 ) = ⦋ 𝐿 / 𝑘 ⦌ 𝐴 ) |