| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumply1eq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
gsumply1eq.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 3 |
|
gsumply1eq.e |
⊢ ↑ = ( .g ‘ ( mulGrp ‘ 𝑃 ) ) |
| 4 |
|
gsumply1eq.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 5 |
|
gsumply1eq.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 6 |
|
gsumply1eq.m |
⊢ ∗ = ( ·𝑠 ‘ 𝑃 ) |
| 7 |
|
gsumply1eq.0 |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 8 |
|
gsumply1eq.a |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ) |
| 9 |
|
gsumply1eq.f1 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) finSupp 0 ) |
| 10 |
|
gsumply1eq.b |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ0 𝐵 ∈ 𝐾 ) |
| 11 |
|
gsumply1eq.f2 |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ 𝐵 ) finSupp 0 ) |
| 12 |
|
gsumply1eq.o |
⊢ ( 𝜑 → 𝑂 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 13 |
|
gsumply1eq.q |
⊢ ( 𝜑 → 𝑄 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 14 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 15 |
1 14 2 3 4 5 6 7 8 9
|
gsumsmonply1 |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 16 |
12 15
|
eqeltrd |
⊢ ( 𝜑 → 𝑂 ∈ ( Base ‘ 𝑃 ) ) |
| 17 |
1 14 2 3 4 5 6 7 10 11
|
gsumsmonply1 |
⊢ ( 𝜑 → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ∈ ( Base ‘ 𝑃 ) ) |
| 18 |
13 17
|
eqeltrd |
⊢ ( 𝜑 → 𝑄 ∈ ( Base ‘ 𝑃 ) ) |
| 19 |
|
eqid |
⊢ ( coe1 ‘ 𝑂 ) = ( coe1 ‘ 𝑂 ) |
| 20 |
|
eqid |
⊢ ( coe1 ‘ 𝑄 ) = ( coe1 ‘ 𝑄 ) |
| 21 |
1 14 19 20
|
ply1coe1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑂 ∈ ( Base ‘ 𝑃 ) ∧ 𝑄 ∈ ( Base ‘ 𝑃 ) ) → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ 𝑂 = 𝑄 ) ) |
| 22 |
21
|
bicomd |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝑂 ∈ ( Base ‘ 𝑃 ) ∧ 𝑄 ∈ ( Base ‘ 𝑃 ) ) → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 23 |
4 16 18 22
|
syl3anc |
⊢ ( 𝜑 → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ) ) |
| 24 |
12
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑂 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 25 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) |
| 26 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 |
| 27 |
|
nfcv |
⊢ Ⅎ 𝑘 ∗ |
| 28 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑙 ↑ 𝑋 ) |
| 29 |
26 27 28
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) |
| 30 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐴 = ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) |
| 31 |
|
oveq1 |
⊢ ( 𝑘 = 𝑙 → ( 𝑘 ↑ 𝑋 ) = ( 𝑙 ↑ 𝑋 ) ) |
| 32 |
30 31
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 33 |
25 29 32
|
cbvmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 34 |
33
|
oveq2i |
⊢ ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐴 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) |
| 35 |
24 34
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑂 = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 36 |
35
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ 𝑂 ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 37 |
36
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) ) |
| 38 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑅 ∈ Ring ) |
| 39 |
|
nfv |
⊢ Ⅎ 𝑙 𝐴 ∈ 𝐾 |
| 40 |
26
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 |
| 41 |
30
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( 𝐴 ∈ 𝐾 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) ) |
| 42 |
39 40 41
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ ℕ0 𝐴 ∈ 𝐾 ↔ ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 43 |
8 42
|
sylib |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∈ 𝐾 ) |
| 45 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐴 |
| 46 |
45 26 30
|
cbvmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐴 ) = ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) |
| 47 |
46 9
|
eqbrtrrid |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) finSupp 0 ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) finSupp 0 ) |
| 49 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑘 ∈ ℕ0 ) |
| 50 |
1 14 2 3 38 5 6 7 44 48 49
|
gsummoncoe1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ) |
| 51 |
|
csbcow |
⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 = ⦋ 𝑘 / 𝑘 ⦌ 𝐴 |
| 52 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐴 = 𝐴 |
| 53 |
51 52
|
eqtri |
⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐴 = 𝐴 |
| 54 |
50 53
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐴 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = 𝐴 ) |
| 55 |
37 54
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = 𝐴 ) |
| 56 |
13
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 = ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) ) |
| 57 |
|
nfcv |
⊢ Ⅎ 𝑙 ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) |
| 58 |
|
nfcsb1v |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 |
| 59 |
58 27 28
|
nfov |
⊢ Ⅎ 𝑘 ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) |
| 60 |
|
csbeq1a |
⊢ ( 𝑘 = 𝑙 → 𝐵 = ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 61 |
60 31
|
oveq12d |
⊢ ( 𝑘 = 𝑙 → ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) = ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 62 |
57 59 61
|
cbvmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) |
| 63 |
62
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) = ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) |
| 64 |
63
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑃 Σg ( 𝑘 ∈ ℕ0 ↦ ( 𝐵 ∗ ( 𝑘 ↑ 𝑋 ) ) ) ) = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 65 |
56 64
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → 𝑄 = ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) |
| 66 |
65
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( coe1 ‘ 𝑄 ) = ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ) |
| 67 |
66
|
fveq1d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) = ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) ) |
| 68 |
|
nfv |
⊢ Ⅎ 𝑙 𝐵 ∈ 𝐾 |
| 69 |
58
|
nfel1 |
⊢ Ⅎ 𝑘 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 |
| 70 |
60
|
eleq1d |
⊢ ( 𝑘 = 𝑙 → ( 𝐵 ∈ 𝐾 ↔ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) ) |
| 71 |
68 69 70
|
cbvralw |
⊢ ( ∀ 𝑘 ∈ ℕ0 𝐵 ∈ 𝐾 ↔ ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 72 |
10 71
|
sylib |
⊢ ( 𝜑 → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 73 |
72
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ∀ 𝑙 ∈ ℕ0 ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∈ 𝐾 ) |
| 74 |
|
nfcv |
⊢ Ⅎ 𝑙 𝐵 |
| 75 |
74 58 60
|
cbvmpt |
⊢ ( 𝑘 ∈ ℕ0 ↦ 𝐵 ) = ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 76 |
75 11
|
eqbrtrrid |
⊢ ( 𝜑 → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) finSupp 0 ) |
| 77 |
76
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( 𝑙 ∈ ℕ0 ↦ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) finSupp 0 ) |
| 78 |
1 14 2 3 38 5 6 7 73 77 49
|
gsummoncoe1 |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ) |
| 79 |
|
csbcow |
⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 |
| 80 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 |
| 81 |
79 80
|
eqtri |
⊢ ⦋ 𝑘 / 𝑙 ⦌ ⦋ 𝑙 / 𝑘 ⦌ 𝐵 = 𝐵 |
| 82 |
78 81
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ ( 𝑃 Σg ( 𝑙 ∈ ℕ0 ↦ ( ⦋ 𝑙 / 𝑘 ⦌ 𝐵 ∗ ( 𝑙 ↑ 𝑋 ) ) ) ) ) ‘ 𝑘 ) = 𝐵 ) |
| 83 |
67 82
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) = 𝐵 ) |
| 84 |
55 83
|
eqeq12d |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ0 ) → ( ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ 𝐴 = 𝐵 ) ) |
| 85 |
84
|
ralbidva |
⊢ ( 𝜑 → ( ∀ 𝑘 ∈ ℕ0 ( ( coe1 ‘ 𝑂 ) ‘ 𝑘 ) = ( ( coe1 ‘ 𝑄 ) ‘ 𝑘 ) ↔ ∀ 𝑘 ∈ ℕ0 𝐴 = 𝐵 ) ) |
| 86 |
23 85
|
bitrd |
⊢ ( 𝜑 → ( 𝑂 = 𝑄 ↔ ∀ 𝑘 ∈ ℕ0 𝐴 = 𝐵 ) ) |