Metamath Proof Explorer


Theorem gsumply1eq

Description: Two univariate polynomials given as (finitely supported) sum of scaled monomials are equal iff the corresponding coefficients are equal. (Contributed by AV, 21-Nov-2019)

Ref Expression
Hypotheses gsumply1eq.p P = Poly 1 R
gsumply1eq.x X = var 1 R
gsumply1eq.e × ˙ = mulGrp P
gsumply1eq.r φ R Ring
gsumply1eq.k K = Base R
gsumply1eq.m ˙ = P
gsumply1eq.0 0 ˙ = 0 R
gsumply1eq.a φ k 0 A K
gsumply1eq.f1 φ finSupp 0 ˙ k 0 A
gsumply1eq.b φ k 0 B K
gsumply1eq.f2 φ finSupp 0 ˙ k 0 B
gsumply1eq.o φ O = P k 0 A ˙ k × ˙ X
gsumply1eq.q φ Q = P k 0 B ˙ k × ˙ X
Assertion gsumply1eq φ O = Q k 0 A = B

Proof

Step Hyp Ref Expression
1 gsumply1eq.p P = Poly 1 R
2 gsumply1eq.x X = var 1 R
3 gsumply1eq.e × ˙ = mulGrp P
4 gsumply1eq.r φ R Ring
5 gsumply1eq.k K = Base R
6 gsumply1eq.m ˙ = P
7 gsumply1eq.0 0 ˙ = 0 R
8 gsumply1eq.a φ k 0 A K
9 gsumply1eq.f1 φ finSupp 0 ˙ k 0 A
10 gsumply1eq.b φ k 0 B K
11 gsumply1eq.f2 φ finSupp 0 ˙ k 0 B
12 gsumply1eq.o φ O = P k 0 A ˙ k × ˙ X
13 gsumply1eq.q φ Q = P k 0 B ˙ k × ˙ X
14 eqid Base P = Base P
15 1 14 2 3 4 5 6 7 8 9 gsumsmonply1 φ P k 0 A ˙ k × ˙ X Base P
16 12 15 eqeltrd φ O Base P
17 1 14 2 3 4 5 6 7 10 11 gsumsmonply1 φ P k 0 B ˙ k × ˙ X Base P
18 13 17 eqeltrd φ Q Base P
19 eqid coe 1 O = coe 1 O
20 eqid coe 1 Q = coe 1 Q
21 1 14 19 20 ply1coe1eq R Ring O Base P Q Base P k 0 coe 1 O k = coe 1 Q k O = Q
22 21 bicomd R Ring O Base P Q Base P O = Q k 0 coe 1 O k = coe 1 Q k
23 4 16 18 22 syl3anc φ O = Q k 0 coe 1 O k = coe 1 Q k
24 12 adantr φ k 0 O = P k 0 A ˙ k × ˙ X
25 nfcv _ l A ˙ k × ˙ X
26 nfcsb1v _ k l / k A
27 nfcv _ k ˙
28 nfcv _ k l × ˙ X
29 26 27 28 nfov _ k l / k A ˙ l × ˙ X
30 csbeq1a k = l A = l / k A
31 oveq1 k = l k × ˙ X = l × ˙ X
32 30 31 oveq12d k = l A ˙ k × ˙ X = l / k A ˙ l × ˙ X
33 25 29 32 cbvmpt k 0 A ˙ k × ˙ X = l 0 l / k A ˙ l × ˙ X
34 33 oveq2i P k 0 A ˙ k × ˙ X = P l 0 l / k A ˙ l × ˙ X
35 24 34 eqtrdi φ k 0 O = P l 0 l / k A ˙ l × ˙ X
36 35 fveq2d φ k 0 coe 1 O = coe 1 P l 0 l / k A ˙ l × ˙ X
37 36 fveq1d φ k 0 coe 1 O k = coe 1 P l 0 l / k A ˙ l × ˙ X k
38 4 adantr φ k 0 R Ring
39 nfv l A K
40 26 nfel1 k l / k A K
41 30 eleq1d k = l A K l / k A K
42 39 40 41 cbvralw k 0 A K l 0 l / k A K
43 8 42 sylib φ l 0 l / k A K
44 43 adantr φ k 0 l 0 l / k A K
45 nfcv _ l A
46 45 26 30 cbvmpt k 0 A = l 0 l / k A
47 46 9 eqbrtrrid φ finSupp 0 ˙ l 0 l / k A
48 47 adantr φ k 0 finSupp 0 ˙ l 0 l / k A
49 simpr φ k 0 k 0
50 1 14 2 3 38 5 6 7 44 48 49 gsummoncoe1 φ k 0 coe 1 P l 0 l / k A ˙ l × ˙ X k = k / l l / k A
51 csbcow k / l l / k A = k / k A
52 csbid k / k A = A
53 51 52 eqtri k / l l / k A = A
54 50 53 eqtrdi φ k 0 coe 1 P l 0 l / k A ˙ l × ˙ X k = A
55 37 54 eqtrd φ k 0 coe 1 O k = A
56 13 adantr φ k 0 Q = P k 0 B ˙ k × ˙ X
57 nfcv _ l B ˙ k × ˙ X
58 nfcsb1v _ k l / k B
59 58 27 28 nfov _ k l / k B ˙ l × ˙ X
60 csbeq1a k = l B = l / k B
61 60 31 oveq12d k = l B ˙ k × ˙ X = l / k B ˙ l × ˙ X
62 57 59 61 cbvmpt k 0 B ˙ k × ˙ X = l 0 l / k B ˙ l × ˙ X
63 62 a1i φ k 0 k 0 B ˙ k × ˙ X = l 0 l / k B ˙ l × ˙ X
64 63 oveq2d φ k 0 P k 0 B ˙ k × ˙ X = P l 0 l / k B ˙ l × ˙ X
65 56 64 eqtrd φ k 0 Q = P l 0 l / k B ˙ l × ˙ X
66 65 fveq2d φ k 0 coe 1 Q = coe 1 P l 0 l / k B ˙ l × ˙ X
67 66 fveq1d φ k 0 coe 1 Q k = coe 1 P l 0 l / k B ˙ l × ˙ X k
68 nfv l B K
69 58 nfel1 k l / k B K
70 60 eleq1d k = l B K l / k B K
71 68 69 70 cbvralw k 0 B K l 0 l / k B K
72 10 71 sylib φ l 0 l / k B K
73 72 adantr φ k 0 l 0 l / k B K
74 nfcv _ l B
75 74 58 60 cbvmpt k 0 B = l 0 l / k B
76 75 11 eqbrtrrid φ finSupp 0 ˙ l 0 l / k B
77 76 adantr φ k 0 finSupp 0 ˙ l 0 l / k B
78 1 14 2 3 38 5 6 7 73 77 49 gsummoncoe1 φ k 0 coe 1 P l 0 l / k B ˙ l × ˙ X k = k / l l / k B
79 csbcow k / l l / k B = k / k B
80 csbid k / k B = B
81 79 80 eqtri k / l l / k B = B
82 78 81 eqtrdi φ k 0 coe 1 P l 0 l / k B ˙ l × ˙ X k = B
83 67 82 eqtrd φ k 0 coe 1 Q k = B
84 55 83 eqeq12d φ k 0 coe 1 O k = coe 1 Q k A = B
85 84 ralbidva φ k 0 coe 1 O k = coe 1 Q k k 0 A = B
86 23 85 bitrd φ O = Q k 0 A = B