| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumply1eq.p |
|
| 2 |
|
gsumply1eq.x |
|
| 3 |
|
gsumply1eq.e |
|
| 4 |
|
gsumply1eq.r |
|
| 5 |
|
gsumply1eq.k |
|
| 6 |
|
gsumply1eq.m |
|
| 7 |
|
gsumply1eq.0 |
|
| 8 |
|
gsumply1eq.a |
|
| 9 |
|
gsumply1eq.f1 |
|
| 10 |
|
gsumply1eq.b |
|
| 11 |
|
gsumply1eq.f2 |
|
| 12 |
|
gsumply1eq.o |
|
| 13 |
|
gsumply1eq.q |
|
| 14 |
|
eqid |
|
| 15 |
1 14 2 3 4 5 6 7 8 9
|
gsumsmonply1 |
|
| 16 |
12 15
|
eqeltrd |
|
| 17 |
1 14 2 3 4 5 6 7 10 11
|
gsumsmonply1 |
|
| 18 |
13 17
|
eqeltrd |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
1 14 19 20
|
ply1coe1eq |
|
| 22 |
21
|
bicomd |
|
| 23 |
4 16 18 22
|
syl3anc |
|
| 24 |
12
|
adantr |
|
| 25 |
|
nfcv |
|
| 26 |
|
nfcsb1v |
|
| 27 |
|
nfcv |
|
| 28 |
|
nfcv |
|
| 29 |
26 27 28
|
nfov |
|
| 30 |
|
csbeq1a |
|
| 31 |
|
oveq1 |
|
| 32 |
30 31
|
oveq12d |
|
| 33 |
25 29 32
|
cbvmpt |
|
| 34 |
33
|
oveq2i |
|
| 35 |
24 34
|
eqtrdi |
|
| 36 |
35
|
fveq2d |
|
| 37 |
36
|
fveq1d |
|
| 38 |
4
|
adantr |
|
| 39 |
|
nfv |
|
| 40 |
26
|
nfel1 |
|
| 41 |
30
|
eleq1d |
|
| 42 |
39 40 41
|
cbvralw |
|
| 43 |
8 42
|
sylib |
|
| 44 |
43
|
adantr |
|
| 45 |
|
nfcv |
|
| 46 |
45 26 30
|
cbvmpt |
|
| 47 |
46 9
|
eqbrtrrid |
|
| 48 |
47
|
adantr |
|
| 49 |
|
simpr |
|
| 50 |
1 14 2 3 38 5 6 7 44 48 49
|
gsummoncoe1 |
|
| 51 |
|
csbcow |
|
| 52 |
|
csbid |
|
| 53 |
51 52
|
eqtri |
|
| 54 |
50 53
|
eqtrdi |
|
| 55 |
37 54
|
eqtrd |
|
| 56 |
13
|
adantr |
|
| 57 |
|
nfcv |
|
| 58 |
|
nfcsb1v |
|
| 59 |
58 27 28
|
nfov |
|
| 60 |
|
csbeq1a |
|
| 61 |
60 31
|
oveq12d |
|
| 62 |
57 59 61
|
cbvmpt |
|
| 63 |
62
|
a1i |
|
| 64 |
63
|
oveq2d |
|
| 65 |
56 64
|
eqtrd |
|
| 66 |
65
|
fveq2d |
|
| 67 |
66
|
fveq1d |
|
| 68 |
|
nfv |
|
| 69 |
58
|
nfel1 |
|
| 70 |
60
|
eleq1d |
|
| 71 |
68 69 70
|
cbvralw |
|
| 72 |
10 71
|
sylib |
|
| 73 |
72
|
adantr |
|
| 74 |
|
nfcv |
|
| 75 |
74 58 60
|
cbvmpt |
|
| 76 |
75 11
|
eqbrtrrid |
|
| 77 |
76
|
adantr |
|
| 78 |
1 14 2 3 38 5 6 7 73 77 49
|
gsummoncoe1 |
|
| 79 |
|
csbcow |
|
| 80 |
|
csbid |
|
| 81 |
79 80
|
eqtri |
|
| 82 |
78 81
|
eqtrdi |
|
| 83 |
67 82
|
eqtrd |
|
| 84 |
55 83
|
eqeq12d |
|
| 85 |
84
|
ralbidva |
|
| 86 |
23 85
|
bitrd |
|