| Step | Hyp | Ref | Expression | 
						
							| 1 |  | gsumply1eq.p |  |-  P = ( Poly1 ` R ) | 
						
							| 2 |  | gsumply1eq.x |  |-  X = ( var1 ` R ) | 
						
							| 3 |  | gsumply1eq.e |  |-  .^ = ( .g ` ( mulGrp ` P ) ) | 
						
							| 4 |  | gsumply1eq.r |  |-  ( ph -> R e. Ring ) | 
						
							| 5 |  | gsumply1eq.k |  |-  K = ( Base ` R ) | 
						
							| 6 |  | gsumply1eq.m |  |-  .* = ( .s ` P ) | 
						
							| 7 |  | gsumply1eq.0 |  |-  .0. = ( 0g ` R ) | 
						
							| 8 |  | gsumply1eq.a |  |-  ( ph -> A. k e. NN0 A e. K ) | 
						
							| 9 |  | gsumply1eq.f1 |  |-  ( ph -> ( k e. NN0 |-> A ) finSupp .0. ) | 
						
							| 10 |  | gsumply1eq.b |  |-  ( ph -> A. k e. NN0 B e. K ) | 
						
							| 11 |  | gsumply1eq.f2 |  |-  ( ph -> ( k e. NN0 |-> B ) finSupp .0. ) | 
						
							| 12 |  | gsumply1eq.o |  |-  ( ph -> O = ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) | 
						
							| 13 |  | gsumply1eq.q |  |-  ( ph -> Q = ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) ) | 
						
							| 14 |  | eqid |  |-  ( Base ` P ) = ( Base ` P ) | 
						
							| 15 | 1 14 2 3 4 5 6 7 8 9 | gsumsmonply1 |  |-  ( ph -> ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) e. ( Base ` P ) ) | 
						
							| 16 | 12 15 | eqeltrd |  |-  ( ph -> O e. ( Base ` P ) ) | 
						
							| 17 | 1 14 2 3 4 5 6 7 10 11 | gsumsmonply1 |  |-  ( ph -> ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) e. ( Base ` P ) ) | 
						
							| 18 | 13 17 | eqeltrd |  |-  ( ph -> Q e. ( Base ` P ) ) | 
						
							| 19 |  | eqid |  |-  ( coe1 ` O ) = ( coe1 ` O ) | 
						
							| 20 |  | eqid |  |-  ( coe1 ` Q ) = ( coe1 ` Q ) | 
						
							| 21 | 1 14 19 20 | ply1coe1eq |  |-  ( ( R e. Ring /\ O e. ( Base ` P ) /\ Q e. ( Base ` P ) ) -> ( A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> O = Q ) ) | 
						
							| 22 | 21 | bicomd |  |-  ( ( R e. Ring /\ O e. ( Base ` P ) /\ Q e. ( Base ` P ) ) -> ( O = Q <-> A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) ) ) | 
						
							| 23 | 4 16 18 22 | syl3anc |  |-  ( ph -> ( O = Q <-> A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) ) ) | 
						
							| 24 | 12 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> O = ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) ) | 
						
							| 25 |  | nfcv |  |-  F/_ l ( A .* ( k .^ X ) ) | 
						
							| 26 |  | nfcsb1v |  |-  F/_ k [_ l / k ]_ A | 
						
							| 27 |  | nfcv |  |-  F/_ k .* | 
						
							| 28 |  | nfcv |  |-  F/_ k ( l .^ X ) | 
						
							| 29 | 26 27 28 | nfov |  |-  F/_ k ( [_ l / k ]_ A .* ( l .^ X ) ) | 
						
							| 30 |  | csbeq1a |  |-  ( k = l -> A = [_ l / k ]_ A ) | 
						
							| 31 |  | oveq1 |  |-  ( k = l -> ( k .^ X ) = ( l .^ X ) ) | 
						
							| 32 | 30 31 | oveq12d |  |-  ( k = l -> ( A .* ( k .^ X ) ) = ( [_ l / k ]_ A .* ( l .^ X ) ) ) | 
						
							| 33 | 25 29 32 | cbvmpt |  |-  ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) | 
						
							| 34 | 33 | oveq2i |  |-  ( P gsum ( k e. NN0 |-> ( A .* ( k .^ X ) ) ) ) = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) | 
						
							| 35 | 24 34 | eqtrdi |  |-  ( ( ph /\ k e. NN0 ) -> O = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) | 
						
							| 36 | 35 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( coe1 ` O ) = ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ) | 
						
							| 37 | 36 | fveq1d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` O ) ` k ) = ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) ) | 
						
							| 38 | 4 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> R e. Ring ) | 
						
							| 39 |  | nfv |  |-  F/ l A e. K | 
						
							| 40 | 26 | nfel1 |  |-  F/ k [_ l / k ]_ A e. K | 
						
							| 41 | 30 | eleq1d |  |-  ( k = l -> ( A e. K <-> [_ l / k ]_ A e. K ) ) | 
						
							| 42 | 39 40 41 | cbvralw |  |-  ( A. k e. NN0 A e. K <-> A. l e. NN0 [_ l / k ]_ A e. K ) | 
						
							| 43 | 8 42 | sylib |  |-  ( ph -> A. l e. NN0 [_ l / k ]_ A e. K ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> A. l e. NN0 [_ l / k ]_ A e. K ) | 
						
							| 45 |  | nfcv |  |-  F/_ l A | 
						
							| 46 | 45 26 30 | cbvmpt |  |-  ( k e. NN0 |-> A ) = ( l e. NN0 |-> [_ l / k ]_ A ) | 
						
							| 47 | 46 9 | eqbrtrrid |  |-  ( ph -> ( l e. NN0 |-> [_ l / k ]_ A ) finSupp .0. ) | 
						
							| 48 | 47 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> ( l e. NN0 |-> [_ l / k ]_ A ) finSupp .0. ) | 
						
							| 49 |  | simpr |  |-  ( ( ph /\ k e. NN0 ) -> k e. NN0 ) | 
						
							| 50 | 1 14 2 3 38 5 6 7 44 48 49 | gsummoncoe1 |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) = [_ k / l ]_ [_ l / k ]_ A ) | 
						
							| 51 |  | csbcow |  |-  [_ k / l ]_ [_ l / k ]_ A = [_ k / k ]_ A | 
						
							| 52 |  | csbid |  |-  [_ k / k ]_ A = A | 
						
							| 53 | 51 52 | eqtri |  |-  [_ k / l ]_ [_ l / k ]_ A = A | 
						
							| 54 | 50 53 | eqtrdi |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ A .* ( l .^ X ) ) ) ) ) ` k ) = A ) | 
						
							| 55 | 37 54 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` O ) ` k ) = A ) | 
						
							| 56 | 13 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> Q = ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) ) | 
						
							| 57 |  | nfcv |  |-  F/_ l ( B .* ( k .^ X ) ) | 
						
							| 58 |  | nfcsb1v |  |-  F/_ k [_ l / k ]_ B | 
						
							| 59 | 58 27 28 | nfov |  |-  F/_ k ( [_ l / k ]_ B .* ( l .^ X ) ) | 
						
							| 60 |  | csbeq1a |  |-  ( k = l -> B = [_ l / k ]_ B ) | 
						
							| 61 | 60 31 | oveq12d |  |-  ( k = l -> ( B .* ( k .^ X ) ) = ( [_ l / k ]_ B .* ( l .^ X ) ) ) | 
						
							| 62 | 57 59 61 | cbvmpt |  |-  ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) | 
						
							| 63 | 62 | a1i |  |-  ( ( ph /\ k e. NN0 ) -> ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) = ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) | 
						
							| 64 | 63 | oveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( P gsum ( k e. NN0 |-> ( B .* ( k .^ X ) ) ) ) = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) | 
						
							| 65 | 56 64 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> Q = ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) | 
						
							| 66 | 65 | fveq2d |  |-  ( ( ph /\ k e. NN0 ) -> ( coe1 ` Q ) = ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ) | 
						
							| 67 | 66 | fveq1d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` Q ) ` k ) = ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) ) | 
						
							| 68 |  | nfv |  |-  F/ l B e. K | 
						
							| 69 | 58 | nfel1 |  |-  F/ k [_ l / k ]_ B e. K | 
						
							| 70 | 60 | eleq1d |  |-  ( k = l -> ( B e. K <-> [_ l / k ]_ B e. K ) ) | 
						
							| 71 | 68 69 70 | cbvralw |  |-  ( A. k e. NN0 B e. K <-> A. l e. NN0 [_ l / k ]_ B e. K ) | 
						
							| 72 | 10 71 | sylib |  |-  ( ph -> A. l e. NN0 [_ l / k ]_ B e. K ) | 
						
							| 73 | 72 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> A. l e. NN0 [_ l / k ]_ B e. K ) | 
						
							| 74 |  | nfcv |  |-  F/_ l B | 
						
							| 75 | 74 58 60 | cbvmpt |  |-  ( k e. NN0 |-> B ) = ( l e. NN0 |-> [_ l / k ]_ B ) | 
						
							| 76 | 75 11 | eqbrtrrid |  |-  ( ph -> ( l e. NN0 |-> [_ l / k ]_ B ) finSupp .0. ) | 
						
							| 77 | 76 | adantr |  |-  ( ( ph /\ k e. NN0 ) -> ( l e. NN0 |-> [_ l / k ]_ B ) finSupp .0. ) | 
						
							| 78 | 1 14 2 3 38 5 6 7 73 77 49 | gsummoncoe1 |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) = [_ k / l ]_ [_ l / k ]_ B ) | 
						
							| 79 |  | csbcow |  |-  [_ k / l ]_ [_ l / k ]_ B = [_ k / k ]_ B | 
						
							| 80 |  | csbid |  |-  [_ k / k ]_ B = B | 
						
							| 81 | 79 80 | eqtri |  |-  [_ k / l ]_ [_ l / k ]_ B = B | 
						
							| 82 | 78 81 | eqtrdi |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` ( P gsum ( l e. NN0 |-> ( [_ l / k ]_ B .* ( l .^ X ) ) ) ) ) ` k ) = B ) | 
						
							| 83 | 67 82 | eqtrd |  |-  ( ( ph /\ k e. NN0 ) -> ( ( coe1 ` Q ) ` k ) = B ) | 
						
							| 84 | 55 83 | eqeq12d |  |-  ( ( ph /\ k e. NN0 ) -> ( ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> A = B ) ) | 
						
							| 85 | 84 | ralbidva |  |-  ( ph -> ( A. k e. NN0 ( ( coe1 ` O ) ` k ) = ( ( coe1 ` Q ) ` k ) <-> A. k e. NN0 A = B ) ) | 
						
							| 86 | 23 85 | bitrd |  |-  ( ph -> ( O = Q <-> A. k e. NN0 A = B ) ) |