Metamath Proof Explorer


Theorem gsumsmonply1

Description: A finite group sum of scaled monomials is a univariate polynomial. (Contributed by AV, 8-Oct-2019)

Ref Expression
Hypotheses gsummonply1.p P = Poly 1 R
gsummonply1.b B = Base P
gsummonply1.x X = var 1 R
gsummonply1.e × ˙ = mulGrp P
gsummonply1.r φ R Ring
gsummonply1.k K = Base R
gsummonply1.m ˙ = P
gsummonply1.0 0 ˙ = 0 R
gsummonply1.a φ k 0 A K
gsummonply1.f φ finSupp 0 ˙ k 0 A
Assertion gsumsmonply1 φ P k 0 A ˙ k × ˙ X B

Proof

Step Hyp Ref Expression
1 gsummonply1.p P = Poly 1 R
2 gsummonply1.b B = Base P
3 gsummonply1.x X = var 1 R
4 gsummonply1.e × ˙ = mulGrp P
5 gsummonply1.r φ R Ring
6 gsummonply1.k K = Base R
7 gsummonply1.m ˙ = P
8 gsummonply1.0 0 ˙ = 0 R
9 gsummonply1.a φ k 0 A K
10 gsummonply1.f φ finSupp 0 ˙ k 0 A
11 eqid 0 P = 0 P
12 1 ply1ring R Ring P Ring
13 ringcmn P Ring P CMnd
14 5 12 13 3syl φ P CMnd
15 nn0ex 0 V
16 15 a1i φ 0 V
17 9 r19.21bi φ k 0 A K
18 5 3ad2ant1 φ k 0 A K R Ring
19 simp3 φ k 0 A K A K
20 simp2 φ k 0 A K k 0
21 eqid mulGrp P = mulGrp P
22 6 1 3 7 21 4 2 ply1tmcl R Ring A K k 0 A ˙ k × ˙ X B
23 18 19 20 22 syl3anc φ k 0 A K A ˙ k × ˙ X B
24 17 23 mpd3an3 φ k 0 A ˙ k × ˙ X B
25 24 fmpttd φ k 0 A ˙ k × ˙ X : 0 B
26 1 ply1lmod R Ring P LMod
27 5 26 syl φ P LMod
28 1 ply1sca R Ring R = Scalar P
29 5 28 syl φ R = Scalar P
30 1 3 21 4 2 ply1moncl R Ring k 0 k × ˙ X B
31 5 30 sylan φ k 0 k × ˙ X B
32 16 27 29 2 17 31 11 8 7 10 mptscmfsupp0 φ finSupp 0 P k 0 A ˙ k × ˙ X
33 2 11 14 16 25 32 gsumcl φ P k 0 A ˙ k × ˙ X B