| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mptscmfsupp0.d |
|
| 2 |
|
mptscmfsupp0.q |
|
| 3 |
|
mptscmfsupp0.r |
|
| 4 |
|
mptscmfsupp0.k |
|
| 5 |
|
mptscmfsupp0.s |
|
| 6 |
|
mptscmfsupp0.w |
|
| 7 |
|
mptscmfsupp0.0 |
|
| 8 |
|
mptscmfsupp0.z |
|
| 9 |
|
mptscmfsupp0.m |
|
| 10 |
|
mptscmfsupp0.f |
|
| 11 |
1
|
mptexd |
|
| 12 |
|
funmpt |
|
| 13 |
12
|
a1i |
|
| 14 |
7
|
fvexi |
|
| 15 |
14
|
a1i |
|
| 16 |
10
|
fsuppimpd |
|
| 17 |
|
simpr |
|
| 18 |
5
|
ralrimiva |
|
| 19 |
18
|
adantr |
|
| 20 |
|
rspcsbela |
|
| 21 |
17 19 20
|
syl2anc |
|
| 22 |
|
eqid |
|
| 23 |
22
|
fvmpts |
|
| 24 |
17 21 23
|
syl2anc |
|
| 25 |
24
|
eqeq1d |
|
| 26 |
|
oveq1 |
|
| 27 |
3
|
adantr |
|
| 28 |
27
|
fveq2d |
|
| 29 |
8 28
|
eqtrid |
|
| 30 |
29
|
oveq1d |
|
| 31 |
2
|
adantr |
|
| 32 |
6
|
ralrimiva |
|
| 33 |
32
|
adantr |
|
| 34 |
|
rspcsbela |
|
| 35 |
17 33 34
|
syl2anc |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
4 36 9 37 7
|
lmod0vs |
|
| 39 |
31 35 38
|
syl2anc |
|
| 40 |
30 39
|
eqtrd |
|
| 41 |
26 40
|
sylan9eqr |
|
| 42 |
|
csbov12g |
|
| 43 |
42
|
adantl |
|
| 44 |
|
ovex |
|
| 45 |
43 44
|
eqeltrdi |
|
| 46 |
|
eqid |
|
| 47 |
46
|
fvmpts |
|
| 48 |
17 45 47
|
syl2anc |
|
| 49 |
48 43
|
eqtrd |
|
| 50 |
49
|
eqeq1d |
|
| 51 |
50
|
adantr |
|
| 52 |
41 51
|
mpbird |
|
| 53 |
52
|
ex |
|
| 54 |
25 53
|
sylbid |
|
| 55 |
54
|
necon3d |
|
| 56 |
55
|
ss2rabdv |
|
| 57 |
|
ovex |
|
| 58 |
57
|
rgenw |
|
| 59 |
46
|
fnmpt |
|
| 60 |
58 59
|
mp1i |
|
| 61 |
|
suppvalfn |
|
| 62 |
60 1 15 61
|
syl3anc |
|
| 63 |
22
|
fnmpt |
|
| 64 |
18 63
|
syl |
|
| 65 |
8
|
fvexi |
|
| 66 |
65
|
a1i |
|
| 67 |
|
suppvalfn |
|
| 68 |
64 1 66 67
|
syl3anc |
|
| 69 |
56 62 68
|
3sstr4d |
|
| 70 |
|
suppssfifsupp |
|
| 71 |
11 13 15 16 69 70
|
syl32anc |
|