Metamath Proof Explorer


Theorem suppvalfn

Description: The value of the operation constructing the support of a function with a given domain. (Contributed by Stefan O'Rear, 1-Feb-2015) (Revised by AV, 22-Apr-2019)

Ref Expression
Assertion suppvalfn FFnXXVZWFsuppZ=iX|FiZ

Proof

Step Hyp Ref Expression
1 fnfun FFnXFunF
2 1 3ad2ant1 FFnXXVZWFunF
3 fnex FFnXXVFV
4 3 3adant3 FFnXXVZWFV
5 simp3 FFnXXVZWZW
6 suppval1 FunFFVZWFsuppZ=idomF|FiZ
7 2 4 5 6 syl3anc FFnXXVZWFsuppZ=idomF|FiZ
8 fndm FFnXdomF=X
9 8 3ad2ant1 FFnXXVZWdomF=X
10 9 rabeqdv FFnXXVZWidomF|FiZ=iX|FiZ
11 7 10 eqtrd FFnXXVZWFsuppZ=iX|FiZ