| Step |
Hyp |
Ref |
Expression |
| 1 |
|
eqcoe1ply1eq.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
eqcoe1ply1eq.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 3 |
|
eqcoe1ply1eq.a |
⊢ 𝐴 = ( coe1 ‘ 𝐾 ) |
| 4 |
|
eqcoe1ply1eq.c |
⊢ 𝐶 = ( coe1 ‘ 𝐿 ) |
| 5 |
1 2 3 4
|
eqcoe1ply1eq |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) → 𝐾 = 𝐿 ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝐾 = 𝐿 → ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐿 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → ( coe1 ‘ 𝐾 ) = ( coe1 ‘ 𝐿 ) ) |
| 8 |
7 3 4
|
3eqtr4g |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → 𝐴 = 𝐶 ) |
| 9 |
8
|
adantr |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → 𝐴 = 𝐶 ) |
| 10 |
9
|
fveq1d |
⊢ ( ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) ∧ 𝑘 ∈ ℕ0 ) → ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) |
| 11 |
10
|
ralrimiva |
⊢ ( ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) ∧ 𝐾 = 𝐿 ) → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) |
| 12 |
11
|
ex |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( 𝐾 = 𝐿 → ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ) ) |
| 13 |
5 12
|
impbid |
⊢ ( ( 𝑅 ∈ Ring ∧ 𝐾 ∈ 𝐵 ∧ 𝐿 ∈ 𝐵 ) → ( ∀ 𝑘 ∈ ℕ0 ( 𝐴 ‘ 𝑘 ) = ( 𝐶 ‘ 𝑘 ) ↔ 𝐾 = 𝐿 ) ) |