| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cply1binom.p |
⊢ 𝑃 = ( Poly1 ‘ 𝑅 ) |
| 2 |
|
cply1binom.x |
⊢ 𝑋 = ( var1 ‘ 𝑅 ) |
| 3 |
|
cply1binom.a |
⊢ + = ( +g ‘ 𝑃 ) |
| 4 |
|
cply1binom.m |
⊢ × = ( .r ‘ 𝑃 ) |
| 5 |
|
cply1binom.t |
⊢ · = ( .g ‘ 𝑃 ) |
| 6 |
|
cply1binom.g |
⊢ 𝐺 = ( mulGrp ‘ 𝑃 ) |
| 7 |
|
cply1binom.e |
⊢ ↑ = ( .g ‘ 𝐺 ) |
| 8 |
|
cply1binom.b |
⊢ 𝐵 = ( Base ‘ 𝑃 ) |
| 9 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 10 |
1
|
ply1ring |
⊢ ( 𝑅 ∈ Ring → 𝑃 ∈ Ring ) |
| 11 |
|
ringcmn |
⊢ ( 𝑃 ∈ Ring → 𝑃 ∈ CMnd ) |
| 12 |
9 10 11
|
3syl |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CMnd ) |
| 13 |
12
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑃 ∈ CMnd ) |
| 14 |
2 1 8
|
vr1cl |
⊢ ( 𝑅 ∈ Ring → 𝑋 ∈ 𝐵 ) |
| 15 |
9 14
|
syl |
⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ 𝐵 ) |
| 16 |
15
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑋 ∈ 𝐵 ) |
| 17 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ 𝐵 ) |
| 18 |
8 3
|
cmncom |
⊢ ( ( 𝑃 ∈ CMnd ∧ 𝑋 ∈ 𝐵 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑋 + 𝐴 ) = ( 𝐴 + 𝑋 ) ) |
| 19 |
13 16 17 18
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑋 + 𝐴 ) = ( 𝐴 + 𝑋 ) ) |
| 20 |
19
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) ) |
| 21 |
1
|
ply1crng |
⊢ ( 𝑅 ∈ CRing → 𝑃 ∈ CRing ) |
| 22 |
21
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑃 ∈ CRing ) |
| 23 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑁 ∈ ℕ0 ) |
| 24 |
8
|
eleq2i |
⊢ ( 𝐴 ∈ 𝐵 ↔ 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 25 |
24
|
biimpi |
⊢ ( 𝐴 ∈ 𝐵 → 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 26 |
25
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝐴 ∈ ( Base ‘ 𝑃 ) ) |
| 27 |
15 8
|
eleqtrdi |
⊢ ( 𝑅 ∈ CRing → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 28 |
27
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → 𝑋 ∈ ( Base ‘ 𝑃 ) ) |
| 29 |
|
eqid |
⊢ ( Base ‘ 𝑃 ) = ( Base ‘ 𝑃 ) |
| 30 |
29 4 5 3 6 7
|
crngbinom |
⊢ ( ( ( 𝑃 ∈ CRing ∧ 𝑁 ∈ ℕ0 ) ∧ ( 𝐴 ∈ ( Base ‘ 𝑃 ) ∧ 𝑋 ∈ ( Base ‘ 𝑃 ) ) ) → ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 31 |
22 23 26 28 30
|
syl22anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝐴 + 𝑋 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |
| 32 |
20 31
|
eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0 ∧ 𝐴 ∈ 𝐵 ) → ( 𝑁 ↑ ( 𝑋 + 𝐴 ) ) = ( 𝑃 Σg ( 𝑘 ∈ ( 0 ... 𝑁 ) ↦ ( ( 𝑁 C 𝑘 ) · ( ( ( 𝑁 − 𝑘 ) ↑ 𝐴 ) × ( 𝑘 ↑ 𝑋 ) ) ) ) ) ) |